1
|
Tong X, Li Z, Xi B, Wang Z, Li Y, Xue W. 3,5-Di(trifluoromethyl)phenyl(cyano)iodonium triflate as a novel and potential activator for p-tolyl thioglycoside donors. Org Biomol Chem 2023; 21:2101-2106. [PMID: 36815222 DOI: 10.1039/d2ob01940j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
3,5-Di(trifluoromethyl)phenyl(cyano)iodonium triflate is described as an accessible, stable, and powerful thiophile that can activate batches of p-tolyl thioglycoside donors at room temperature. Various alcoholic acceptors were efficiently glycosylated, providing the desired glycosides. The novel activation protocol features mild conditions as well as high compatibility with some classic strategies for the stereoselective construction of some biologically relevant glycosidic linkages, as exemplified by α-idosides, α-galactoamines, β-mannosides, and β-rhamnosides.
Collapse
Affiliation(s)
- Xiaowei Tong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zuowa Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Boting Xi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhaoyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yuan Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Weihua Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
Liang XY, Liu AL, Shawn Fan HJ, Wang L, Xu ZN, Ding XG, Huang BS. TsOH-catalyzed acyl migration reaction of the Bz-group: innovative assembly of various building blocks for the synthesis of saccharides. Org Biomol Chem 2023; 21:1537-1548. [PMID: 36723045 DOI: 10.1039/d2ob02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed an efficient method to achieve the regioselective acyl migration of benzoyl ester. In all the cases, the reactions required only the commercially available organic acid catalyst TsOH·H2O. This method enables the benzoyl group to migrate from secondary groups to primary hydroxyl groups, or from equatorial secondary hydroxyl groups to axial hydroxyl groups. The 1,2 or 1,3 acyl migration would potentially occur via five- and six-membered cyclic ortho acid intermediates. A wide range of orthogonally protected monosaccharides, which are useful intermediates for the synthesis of natural oligosaccharides, were synthesized. Finally, to demonstrate the utility of the method, a tetrasaccharide portion from a mycobacterial cell wall polysaccharide was assembled.
Collapse
Affiliation(s)
- Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - An-Lin Liu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hua-Jun Shawn Fan
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Lei Wang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Zhi-Ning Xu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xin-Gang Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute, 1200 East California Boulevard, Pasadena, California 91125, USA.
| |
Collapse
|
3
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
4
|
Li SJ, Fang Q, Huang YW, Luo YY, Mu XD, Li L, Yin XC, Yang JS. Chemical Synthesis of the Nonreducing Hexasaccharide Fragment of Axinelloside A Based on a Stepwise Glycosylation Approach. Org Lett 2022; 24:7088-7094. [PMID: 36169189 DOI: 10.1021/acs.orglett.2c02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An expedient synthesis of the nonreducing hexasaccharide fragment of axinelloside A has been completed via a linear stepwise glycosylation approach. Challenges involved in the synthesis include the highly stereoselective construction of five consecutive 1,2-cis-glycosidic linkages and the formation of a sterically crowded 2,3-disubstituted l-fucoside subunit. Protecting group-directing glycosylation strategies such as the remote participation effect of the benzoyl substituent and the stereocontrolling effect of the 4,6-O-benzylidene group were employed for the synthesis of the desired 1,2-cis-glycosidic linkages. Moreover, the 2,3-branched l-fucoside framework was established through a 3-O and then 2-O glycosylation sequence in which the 3-hydroxyl group of the core l-fucose unit was glycosylated first and then the 2-hydroxyl. The synthetic hexasaccharide is properly protected, so it can be employed as a precursor to synthesize its natural form.
Collapse
Affiliation(s)
- Su-Jia Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Fang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi-Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Chen Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Lei J, Jiang Y, Xia Y, Fang Q, Duan S, Ruan Y, Yang J. Stereoselective Synthesis of a Tetrasaccharide Fragment from Rhamnogalacturonan
II
Side Chain A. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin‐Cai Lei
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yuan‐Yuan Jiang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Fei Xia
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Qing Fang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yu‐Xiong Ruan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Jin‐Song Yang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
6
|
Mishra B, Manmode S, Walke G, Chakraborty S, Neralkar M, Hotha S. Synthesis of the hyper-branched core tetrasaccharide motif of chloroviruses. Org Biomol Chem 2021; 19:1315-1328. [PMID: 33459320 DOI: 10.1039/d0ob02176h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Sujit Manmode
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| |
Collapse
|
7
|
Danglad-Flores J, Leichnitz S, Sletten ET, Abragam Joseph A, Bienert K, Le Mai Hoang K, Seeberger PH. Microwave-Assisted Automated Glycan Assembly. J Am Chem Soc 2021; 143:8893-8901. [PMID: 34060822 PMCID: PMC8213053 DOI: 10.1021/jacs.1c03851] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Automated synthesis
of DNA, RNA, and peptides provides quickly
and reliably important tools for biomedical research. Automated glycan
assembly (AGA) is significantly more challenging, as highly branched
carbohydrates require strict regio- and stereocontrol during synthesis.
A new AGA synthesizer enables rapid temperature adjustment from −40
to +100 °C to control glycosylations at low temperature and accelerates
capping, protecting group removal, and glycan modifications using
elevated temperatures. Thereby, the temporary protecting group portfolio
is extended from two to four orthogonal groups that give rise to oligosaccharides
with up to four branches. In addition, sulfated glycans and unprotected
glycans can be prepared. The new design reduces the typical coupling
cycles from 100 to 60 min while expanding the range of accessible
glycans. The instrument drastically shortens and generalizes the synthesis
of carbohydrates for use in biomedical and material science.
Collapse
Affiliation(s)
- José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - A Abragam Joseph
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Klaus Bienert
- Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Kim Le Mai Hoang
- GlycoUniverse GmbH & Co KGaA, Am Mühlenberg 11, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Dong S, Zhao Y, Shi Y, Xu Z, Shen J, Jia Q, Li Y, Chen K, Li B, Zhu W. One step stereoselective synthesis of oxazoline-fused saccharides and their conversion into the corresponding 1,2- cis glycosylamines bearing various protected groups. Org Biomol Chem 2021; 19:1580-1588. [PMID: 33522535 DOI: 10.1039/d0ob02477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we disclosed a straightforward synthesis of oxazoline-fused saccharides (oxazolinoses) from peracetylated saccharides and benzonitriles under acidic conditions with stoichiometric amounts of water. The density functional theory (DFT) calculations have revealed the origin of the stereoselectivity and the key role of water in promoting the departure of the acetyl group at C-2. The resulting oxazolinoses can be concisely converted into the corresponding 1,2-cis glycosylamines bearing various protected groups, allowing the access to schisandrin derivatives.
Collapse
Affiliation(s)
- Sanfeng Dong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Bo Li
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
9
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|