1
|
Ma Y, Liu Y, Cao C, Peng J, Jiang Y, Li T. Host-Guest Chemistry-Mediated Biomimetic Chemoenzymatic Synthesis of Complex Glycosphingolipids. J Am Chem Soc 2025; 147:6974-6982. [PMID: 39933159 DOI: 10.1021/jacs.4c17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Glycosphingolipids (GSLs) are amphipathic complex biomolecules constituted of hydrophilic glycans covalently linked to hydrophobic lipids via glycosidic bonds. GSLs are widely distributed in cells and tissues, where they play crucial roles in various biological functions and disease processes. However, the heterogeneity and complexity of GSLs make it difficult to explore their precise biofunctions due to obstacles in obtaining well-defined structures. Herein, we report a host-guest-chemistry-mediated biomimetic chemoenzymatic approach for the efficient synthesis of diverse complex GSLs. A key feature of this approach is that the use of methyl-β-cyclodextrin enables amphipathic glycolipids forming water-soluble inclusion complexes to improve their solubility in aqueous media, thereby facilitating enzyme-catalyzed reactions. The power and applicability of our approach are demonstrated by the streamlined synthesis of biologically important globo-, ganglio-, neolacto-, and lacto-series GSLs library containing 20 neutral and acidic glycolipids with different fucosylation and sialylation patterns. The developed method will open new avenues to easily access a wide range of complex GSLs for biomedical applications.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiarong Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Xu Z, Liu Y, Liu J, Ma W, Zhang Z, Chapla DG, Wen L, Moremen KW, Yi W, Li T. Integrated chemoenzymatic synthesis of a comprehensive sulfated ganglioside glycan library to decipher functional sulfoglycomics and sialoglycomics. Nat Chem 2024; 16:881-892. [PMID: 38844638 DOI: 10.1038/s41557-024-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024]
Abstract
Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.
Collapse
Affiliation(s)
- Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jialin Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhumin Zhang
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Liuqing Wen
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Liu Y, Yan M, Wang M, Luo S, Wang S, Luo Y, Xu Z, Ma W, Wen L, Li T. Stereoconvergent and Chemoenzymatic Synthesis of Tumor-Associated Glycolipid Disialosyl Globopentaosylceramide for Probing the Binding Affinity of Siglec-7. ACS CENTRAL SCIENCE 2024; 10:417-425. [PMID: 38435515 PMCID: PMC10906248 DOI: 10.1021/acscentsci.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is a tumor-associated complex glycosphingolipid. However, the accessibility of structurally well-defined DSGb5 for precise biological functional studies remains challenging. Herein, we describe the first total synthesis of DSGb5 glycolipid by an efficient chemoenzymatic approach. A Gb5 pentasaccharide-sphingosine was chemically synthesized by a convergent and stereocontrolled [2 + 3] method using an oxazoline disaccharide donor to exclusively form β-anomeric linkage. After investigating the substrate specificity of different sialyltransferases, regio- and stereoselective installment of two sialic acids was achieved by two sequential enzyme-catalyzed reactions using α2,3-sialyltransferase Cst-I and α2,6-sialyltransferase ST6GalNAc5. A unique aspect of the approach is that methyl-β-cyclodextrin-assisted enzymatic α2,6-sialylation of glycolipid substrate enables installment of the challenging internal α2,6-linked sialoside to synthesize DSGb5 glycosphingolipid. Surface plasmon resonance studies indicate that DSGb5 glycolipid exhibits better binding affinity for Siglec-7 than the oligosaccharide moiety of DSGb5. The binding results suggest that the ceramide moiety of DSGb5 facilitates its binding by presenting multivalent interactions of glycan epitope for the recognition of Siglec-7.
Collapse
Affiliation(s)
- Yating Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Mengkun Yan
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Shasha Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yawen Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojia Xu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Wen
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ando H, Komura N. Recent progress in the synthesis of glycosphingolipids. Curr Opin Chem Biol 2024; 78:102423. [PMID: 38184907 DOI: 10.1016/j.cbpa.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
To accelerate the biological study and application of the diverse functions of glycosphingolipids (GSLs), the production of structurally defined GSLs has been greatly demanded. In this review, we focus on the recent developments in the chemical and chemoenzymatic synthesis of GSLs. In the chemical synthesis section, the syntheses based on glucosyl ceramide cassette, late-stage sialylation, and diversity-oriented strategies for GSLs or ganglioside synthesis are highlighted, which delivered terpioside B, fluorescent sialyl lactotetraosyl ceramide, and analogs of lacto-ganglio-series GSLs, respectively. In the chemoenzymatic synthesis section, the synthesis of ganglioside GM1 by multistep one-pot multienzyme method and the total synthesis of highly complex ganglioside LLG-5 using a water-soluble lactosyl ceramide as a key substrate for enzymatic sialylation are described.
Collapse
Affiliation(s)
- Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
7
|
Lomba-Riego L, Calvino-Sanles E, Brea RJ. In situ synthesis of artificial lipids. Curr Opin Chem Biol 2022; 71:102210. [PMID: 36116189 DOI: 10.1016/j.cbpa.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Lipids constitute one of the most enigmatic family of biological molecules. Although the importance of lipids as basic units of compartmental structure and energy storage is well-acknowledged, deciphering the biosynthesis and precise roles of specific lipid species has been challenging. To better understand the structure and function of these biomolecules, there is a burgeoning interest in developing strategies to produce noncanonical lipids in a controlled manner. This review covers recent advances in the area of in situ generation of synthetic lipids. Specifically, we report several approaches that constitute a powerful toolbox for achieving noncanonical lipid synthesis. We describe how these methodologies enable the direct construction of synthetic lipids, helping to address fundamental questions related to the cell biology of lipid biosynthesis, trafficking, and signaling. We envision that highlighting the current advances in artificial lipid synthesis will pave the way for broader interest into this emerging class of biomimetic molecules.
Collapse
Affiliation(s)
- Lucia Lomba-Riego
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Esther Calvino-Sanles
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain.
| |
Collapse
|
8
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|
9
|
Chiang PY, Adak AK, Liang WL, Tsai CY, Tseng HK, Cheng JY, Hwu JR, Yu AL, Hung JT, Lin CC. Chemoenzymatic Synthesis of Globo-series Glycosphingolipids and Evaluation of Their Immunosuppressive Activities. Chem Asian J 2022; 17:e202200403. [PMID: 35616406 DOI: 10.1002/asia.202200403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Glycosphingolipids (GSLs) play essential roles in many important biological processes, making them attractive synthetic targets. In this paper, a viable chemoenzymatic method is described for the synthesis of globo-series GSLs, namely, Gb4, Gb5, SSEA-4, and Globo H. The strategy uses a chemically synthesized lactoside acceptor equipped with a partial ceramide structure that is uniquely extended by glycosyltransferases in a highly efficient one-pot multiple engyme (OPME) procedure. A direct and quantitative conversion of Gb4 sphingosine to Globo H sphingosine is achieved by performing two-sequential OPME glycosylations. A reduction and N -acylation protocol allows facile incorporation of various fatty acids into the lipid portions of the GSLs. The chemically well-defined lipid-modified Globo H-GSLs displayed some differences in their immunosuprressive activities, which may benefit the structural modifications of Globo h ceramides in finding new types of immunosuppressive agents. The strategy outlined in this work should be applicable to rapid access to other complex GSLs.
Collapse
Affiliation(s)
- Pei-Yun Chiang
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Avijit K Adak
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Wei-Lun Liang
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Chen-Yen Tsai
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Hsin-Kai Tseng
- National Tsing Hua University, Departemnt of Chemistry, TAIWAN
| | - Jing-Yan Cheng
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Jih Ru Hwu
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Alice L Yu
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Jung-Tung Hung
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Chun-Cheng Lin
- National Tsing Hua University, Department of chemistry, 101 Sec. 2, Kuang Fu Rd, 30013, Hsinchu, TAIWAN
| |
Collapse
|
10
|
Huang F, Bailey LS, Gao T, Jiang W, Yu L, Bennett DA, Zhao J, Basso KB, Guo Z. Analysis and Comparison of Mouse and Human Brain Gangliosides via Two-Stage Matching of MS/MS Spectra. ACS OMEGA 2022; 7:6403-6411. [PMID: 35224401 PMCID: PMC8867566 DOI: 10.1021/acsomega.1c07070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 05/13/2023]
Abstract
Glycosphingolipids (GSLs), including gangliosides, are essential components of the cell membrane. Because of their vital biological functions, a facile method for the analysis and comparison of GSLs in biological issues is desired. To this end, a new method for GSL analysis was developed based on two-stage matching of the carbohydrate and glycolipid product ions of experimental and reference MS/MS spectra of GSLs. The applicability of this method to the analysis of gangliosides in biological tissues was verified using human plasma and mouse brains spiked with standards. The method was then used to characterize endogenous gangliosides in mouse and human brains. It was shown that each endogenous ganglioside species had varied lipid forms and that mouse and human brains had different compositions of ganglioside species and lipid forms. Moreover, a 36-carbon ceramide is found to represent the major lipid form for mouse brain gangliosides, while the major lipid form for most human brain gangliosides is a 38-carbon ceramide. This study has verified that the two-stage MS/MS spectral matching method could be used to study gangliosides or GSLs and their lipid forms in complex biological samples, thereby having a broad application.
Collapse
Affiliation(s)
- Fanran Huang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Laura S. Bailey
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tianqi Gao
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wenjie Jiang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lei Yu
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - David A. Bennett
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - Jinying Zhao
- Department
of Epidemiology, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B. Basso
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Guo Z, Li Q. Enzymatic Synthesis of Glycosphingolipids: A Review. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1426-4451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractGlycosphingolipids (GSLs) are the major vertebrate glycolipids, which contain two distinctive moieties, a glycan and a ceramide, stitched together by a β-glycosidic linkage. The hydrophobic lipid chains of ceramide can insert into the cell membrane to form ‘lipid rafts’ and anchor the hydrophilic glycan onto the cell surface to generate microdomains and function as signaling molecules. GSLs mediate signal transduction, cell interactions, and many other biological activities, and are also related to many diseases. To meet the need of biological studies, chemists have developed various synthetic methodologies to access GSLs. Among them, the application of enzymes to GSL synthesis has witnessed significant advancements in the past decades. This short review briefly summarizes the history and progress of enzymatic GSL synthesis.1 Introduction1.1 The Glycosphingolipid Structure1.2 GSL Biosynthesis1.3 Functions and Biological Significance1.4 Overview of GSL Synthesis1.5 Scope of the Review2 Glycotransferases for GSL Synthesis3 Glycosynthases for GSL Synthesis4 Enzymatic Synthesis of Ceramide5 Conclusion
Collapse
|
12
|
Yu H, Gadi MR, Bai Y, Zhang L, Li L, Yin J, Wang PG, Chen X. Chemoenzymatic Total Synthesis of GM3 Gangliosides Containing Different Sialic Acid Forms and Various Fatty Acyl Chains. J Org Chem 2021; 86:8672-8682. [PMID: 34152144 DOI: 10.1021/acs.joc.1c00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that have been found in the cell membranes of all vertebrates. Their important biological functions are contributed by both the glycan and the ceramide lipid components. GM3 is a major ganglioside and a precursor for many other more complex gangliosides. To obtain structurally diverse GM3 gangliosides containing various sialic acid forms and different fatty acyl chains in low cost, an improved process was developed to chemically synthesize lactosyl sphingosine from an inexpensive l-serine derivative. It was then used to obtain GM3 sphingosines from diverse modified sialic acid precursors by an efficient one-pot multienzyme sialylation system containing Pasteurella multocida sialyltransferase 3 (PmST3) with in situ generation of sugar nucleotides. A highly effective chemical acylation and facile C18-cartridge purification process was then used to install fatty acyl chains of varying lengths and different modifications. The chemoenzymatic method represents a powerful total synthetic strategy to access a library of structurally defined GM3 gangliosides to explore their functions.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuanyuan Bai
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Libo Zhang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
13
|
Wang H, Sun C, Sun X, Zhang L, Zhao J, Liang M, Xiao M, Gu G. Biochemical Characterization and Synthetic Application of α‐1,3‐Glucosyltransferase from Pneumococcus Serotype 18C. ChemCatChem 2021. [DOI: 10.1002/cctc.202100507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Chongzhen Sun
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Xuan Sun
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Le Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Jielin Zhao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Min Liang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Min Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| |
Collapse
|
14
|
Bailey LS, Huang F, Gao T, Zhao J, Basso KB, Guo Z. Characterization of Glycosphingolipids and Their Diverse Lipid Forms through Two-Stage Matching of LC-MS/MS Spectra. Anal Chem 2021; 93:3154-3162. [PMID: 33534538 DOI: 10.1021/acs.analchem.0c04542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) play a key role in various biological and pathological events. Thus, determination of the complete GSL compositions in human tissues is essential for comparative and functional studies of GSLs. In this work, a new strategy was developed for GSL characterization and glycolipidomics analysis based on two-stage matching of experimental and reference MS/MS spectra. In the first stage, carbohydrate fragments, which contain only glycans and thus are conserved within a GSL species, are directly matched to yield a species identification. In the second stage, glycolipid fragments from the matched GSL species, which contain both the lipid and glycans and thus shift due to lipid structural changes, are treated according to lipid rule-based matching to characterize the lipid compositions. This new strategy uses the whole spectrum for GSL characterization. Furthermore, simple databases containing only a single lipid form per GSL species can be utilized to identify multiple GSL lipid forms. It is expected that this method will help accelerate glycolipidomics analysis and disclose new and diverse lipid forms of GSLs.
Collapse
|