1
|
Fumanal Idocin A, Specklin S, Taran F. Sydnonimines: synthesis, properties and applications in chemical biology. Chem Commun (Camb) 2025; 61:5704-5718. [PMID: 40066827 DOI: 10.1039/d5cc00535c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Sydnonimines are intriguing compounds belonging to the mesoionic family. To date, only a limited number of research groups have studied their chemistry and use in organic synthesis, medicinal chemistry and chemical biology. This review aims at providing an overview of the synthesis and the properties of sydnonimines and the most recent developments in their use as tools for chemical biology. The recent discovery that sydnonimines can act as a dipole to undergo bioorthogonal click-and-release reactions with cycloalkynes has stimulated a renewed interest from the scientific community. Given the high potential of these mesoionics, we believe that major developments are to be expected in the field of bioorthogonal chemistry.
Collapse
Affiliation(s)
- Alfonso Fumanal Idocin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay 91401, France.
| | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay 91401, France.
| | - Frédéric Taran
- Département Médicaments et Technologies pour la Santé, CEA-DMTS-SCBM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Saintomé C, Monfret O, Doisneau G, Guianvarc'h D. Oligonucleotide-Based Photoaffinity Probes: Chemical Tools and Applications for Protein Labeling. Chembiochem 2024; 25:e202400097. [PMID: 38703401 DOI: 10.1002/cbic.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
A variety of proteins interact with DNA and RNA, including polymerases, histones, ribosomes, transcription factors, and repair enzymes. However, the transient non-covalent nature of these interactions poses challenges for analysis. Introducing a covalent bond between proteins and DNA via photochemical activation of a photosensitive functional group introduced onto nucleic acids offers a means to stabilize these often weak interactions without significantly altering the binding interface. Consequently, photoactivatable oligonucleotides are powerful tools for investigating nucleic acid-protein interactions involved in numerous biological and pathological processes. In this review, we provide a comprehensive overview of the chemical tools developed so far and the different strategies used for incorporating the most commonly used photoreactive reagents into oligonucleotide probes or nucleic acids. Furthermore, we illustrate their application with several examples including protein binding site mapping, identification of protein binding partners, and in cell studies.
Collapse
Affiliation(s)
- Carole Saintomé
- Sorbonne Université, UFR 927, MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005, Paris, France
| | - Océane Monfret
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| |
Collapse
|
3
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
4
|
Polikanov YS, Etheve-Quelquejeu M, Micura R. Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications. Acc Chem Res 2023; 56:2713-2725. [PMID: 37728742 PMCID: PMC10552525 DOI: 10.1021/acs.accounts.3c00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.
Collapse
Affiliation(s)
- Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center for
Biomolecular Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Si R, Zhu H, Wang J, Zhang Q, Li Y, Pan X, Zhang J. Discovery of Novel Protein Degraders Based on Bioorthogonal Reaction-Driven Intracellular Self-Assembly Strategy. Bioorg Chem 2023; 135:106497. [PMID: 37003135 DOI: 10.1016/j.bioorg.2023.106497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Proteolysis targeting chimera (PROTAC) is a promising therapeutic modality capable of degrading undruggable proteins and overcoming the shortcomings of traditional inhibitors. However, the molecular weight and pharmaceutical properties of PROTACs fall outside of a reasonable range. To overcome the inherent poor druggability of PROTACs, an intracellular self-assembly strategy based on bio-orthogonal reaction was proposed and applied in this study. Herein, two novel classes of intracellular precursors that can self-assemble into protein degraders through bio-orthogonal reactions were explored, including a novel class of E3 ubiquitin ligase ligands bearing tetrazine (E3L-Tz) and target protein ligands incorporated with norbornene (TPL-Nb). These two types of precursors could spontaneously undergo bio-orthogonal reactions in living cells, affording novel PROTACs. Among these precursors, the biological activities of PROTACs formed by target protein ligand with norbornene group (S4N-1) were more potent than others and degrade VEGFR-2, PDGFR-β and EphB4. The results demonstrated that a highly specific bio-orthogonal reaction driven intracellular self-assembly strategy in living cells could be utilized to improve the degradation activity of PROTACs.
Collapse
|
6
|
Kitoun C, Saidjalolov S, Bouquet D, Djago F, Remaury QB, Sargueil B, Poinot P, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation to Access Stable Aminoacyl- or Peptidyl-Dinucleotide. ACS OMEGA 2023; 8:3850-3860. [PMID: 36743074 PMCID: PMC9893454 DOI: 10.1021/acsomega.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Aminoacyl- and peptidyl-tRNA are specific biomolecules involved in many biological processes, from ribosomal protein synthesis to the synthesis of peptidoglycan precursors. Here, we report a post-synthetic approach based on traceless Staudinger ligation for the synthesis of a stable amide bond to access aminoacyl- or peptidyl-di-nucleotide. A series of amino-acid and peptide ester phenyl phosphines were synthetized, and their reactivity was studied on a 2'-N3 di-nucleotide. The corresponding 2'-amide di-nucleotides were obtained and characterized by LC-HRMS, and mechanistic interpretations of the influence of the amino acid phenyl ester phosphine were proposed. We also demonstrated that enzymatic 5'-OH phosphorylation is compatible with the acylated di-nucleotide, allowing the possibility to access stable aminoacylated-tRNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Saidbakhrom Saidjalolov
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Delphine Bouquet
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Fabiola Djago
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Quentin Blancart Remaury
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Bruno Sargueil
- Université
Paris Cité, CNRS, UMR 8038/CiTCoM, Paris F-75006, France
| | - Pauline Poinot
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Laura Iannazzo
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| |
Collapse
|
7
|
Bouchet F, Atze H, Arthur M, Ethève-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation To Introduce Chemical Diversity on β-Lactamase Inhibitors of Second Generation. Org Lett 2021; 23:7755-7758. [PMID: 34613747 DOI: 10.1021/acs.orglett.1c02741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explored the traceless Staudinger ligation for the functionalization of the C2 position of second generation β-lactamase inhibitors based on a diazabicyclooctane (DBO) scaffold. Our strategy is based on the synthesis of phosphine phenol esters and their ligation to an azido-containing precursor. Biological evaluation showed that this route provided access to a DBO that proved to be superior to commercial relebactam for inhibition of two of the five β-lactamases that were tested.
Collapse
Affiliation(s)
- Flavie Bouchet
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Heiner Atze
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Mélanie Ethève-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
8
|
Kitoun C, Fonvielle M, Arthur M, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation for Bioconjugation of RNA. Curr Protoc 2021; 1:e42. [PMID: 33591622 DOI: 10.1002/cpz1.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Staudinger ligation is an attractive bioorthogonal reaction for use in studying biomolecules due to its capacity to form a native amide bond between a tag and a biomolecule. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. The procedure involves (i) synthesis of phosphine-containing reactive groups, affinity purification tags, or photoactivatable benzophenone probe, (ii) synthesis of 2'-azido dinucleotides and 24-nt RNA, and (iii) traceless Staudinger ligation experiments. Each phosphine was characterized by 1 H, 13 C, and 31 P NMR and high-resolution spectrometry and the functionalized nucleotides were characterized by LC/MS. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phosphines Basic Protocol 2: Synthesis of dinucleotides 4 and 5 Basic Protocol 3: Synthesis of modified RNA 6 Basic Protocol 4: Traceless Staudinger reactions on a dinucleotide Basic Protocol 5: Traceless Staudinger reaction on RNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Mélanie Etheve-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Paris, France
| |
Collapse
|
9
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|