1
|
Uppuluru A, Annamalai P, Padala K. Recent advances in 4CzIPN-mediated functionalizations with acyl precursors: single and dual photocatalytic systems. Chem Commun (Camb) 2025; 61:3601-3635. [PMID: 39911039 DOI: 10.1039/d4cc06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
4CzIPN (1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene) has emerged as a key metal-free photocatalyst for sustainable organic synthesis. Due to its unique design enabling high photoluminescence quantum yield, thermally activated delayed fluorescence (TADF) and long excited state lifetime, 4CzIPN facilitates diverse reactions, such as C-C and C-X bond formation reactions, under mild reaction conditions. This review highlights its application in decarboxylation, acylation and cyclisation reactions involving α-keto acids, carboxylic acids and aldehydes in a single catalytic system, as well as the combination of a dual catalytic system with transition metals to enhance selectivity and scope. 4CzIPN contributes to the advancement of sustainable chemistry by enabling green, efficient and scalable reactions and this review covers studies published between 2020 and 2024.
Collapse
Affiliation(s)
- Ajay Uppuluru
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Pratheepkumar Annamalai
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
2
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
3
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
4
|
Kim D, Gray TG, Teets TS. Heteroleptic copper(I) charge-transfer chromophores with panchromatic absorption. Chem Commun (Camb) 2022; 58:11446-11449. [PMID: 36148809 DOI: 10.1039/d2cc03873k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new heteroleptic bis-chelate Cu(I) complexes showing panchromatic visible absorption are described here. With this heteroleptic design, we demonstrate that the energy levels of the spatially separated HOMO and LUMO can be independently and systematically controlled via ligand modification, with charge-transfer absorption bands throughout the visible and NIR regions that cover a wider range than typical Cu(I) chromophores.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
5
|
Sun W, Zou J, Xu X, Wang J, Liu M, Liu X. Photo‐Catalyzed Redox‐Neutral 1,2‐Dialkylation of Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Hui Sun
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jian‐Yu Zou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Jing Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin‐Lin Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Mei‐Ling Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
6
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
7
|
Louvel D, Souibgui A, Taponard A, Rouillon J, ben Mosbah M, Moussaoui Y, Pilet G, Khrouz L, Monnereau C, Vantourout JC, Tlili A. Tailoring the Reactivity of the Langlois Reagent and Styrenes with Cyanoarenes Organophotocatalysts under Visible‐Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dan Louvel
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Amel Souibgui
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Jean Rouillon
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Mongi ben Mosbah
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15) Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08) Faculty of Sciences of Sfax University of Sfax Sfax 3029 Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Gafsa 2112 Tunisia
| | - Guillaume Pilet
- Univ Lyon Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR 5615, CNRS, Bâtiment Chevreul Avenue du 11 novembre 1918 69622 Villeurbanne cedex France
| | - Lhoussain Khrouz
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Cyrille Monnereau
- Univ Lyon ENS de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie F-69342 Lyon France
| | - Julien C. Vantourout
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
8
|
Zhang P, Li W, Qu W, Shu Z, Tao Y, Lin J, Gao X. Copper and Photocatalytic Radical Relay Enabling Fluoroalkylphosphorothiolation of Alkenes: Modular Synthesis of Fluorine-Containing S-Alkyl Phosphorothioates and Phosphorodithioates. Org Lett 2021; 23:9267-9272. [PMID: 34779202 DOI: 10.1021/acs.orglett.1c03608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A photoredox and copper-catalyzed fluoroalkylphosphorothiolation of activated and unactivated alkenes via a radical relay mechanism is reported. By employing fluoroalkyl halides as radical precursors and P(O)SH or P(S)SH compounds as coupling partners, a wide range of β-monofluoroalkyl-, -difluoroalkyl-, -trifluoromethyl-, or -perfluoroalkyl-substituted S-alkyl phosphorothioates and phosphorodithioates can be easily constructed under mild conditions with good functional group tolerance. Furthermore, this modular reaction system can be successfully applied to late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
9
|
Wang L, Zhang H, Zhu C, Feng C. Expedient Trifluoromethylacylation of Styrenes Enabled by Photoredox Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Heng Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| |
Collapse
|
10
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
11
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1 CNRS CPE-Lyon INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier Laboratoire Hétérochimie Fondamentale et Appliquée LHFA UMR 5069 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
12
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021; 60:19526-19549. [PMID: 33881207 DOI: 10.1002/anie.202102262] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/16/2021] [Indexed: 01/18/2023]
Abstract
The use of organic photocatalysts has revolutionized the field of photoredox catalysis, as it allows access to reactivities that were traditionally restricted to transition-metal photocatalysts. This Minireview reports recent developments in the use of acridinium ions and cyanoarene derivatives in organic synthesis. The activation of inert chemical bonds as well as the late-stage functionalization of biorelevant molecules are discussed, with a special focus on their mechanistic aspects.
Collapse
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Sami Lakhdar
- CNRS/Université Toulouse III-Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
13
|
Zhang P, Yu G, Li W, Shu Z, Wang L, Li Z, Gao X. Copper-Catalyzed Multicomponent Trifluoromethylphosphorothiolation of Alkenes: Access to CF 3-Containing Alkyl Phosphorothioates. Org Lett 2021; 23:5848-5852. [PMID: 34250811 DOI: 10.1021/acs.orglett.1c01985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented copper-catalyzed multicomponent radical-based reaction involving alkenes, P(O)H compounds, sulfur powder, and Togni reagent II at room temperature has been developed. A variety of highly functionalized CF3-containing S-alkyl phosphorothioates can be directly prepared from a wide range of activated and unactivated alkenes. Moreover, this protocol highlights its potential in the late-stage functionalization of complex molecules and opens up a new avenue for the construction of C(sp3)-S-P bonds.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guo Yu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoting Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
14
|
Cabrera-Afonso MJ, Sookezian A, Badir SO, El Khatib M, Molander GA. Photoinduced 1,2-dicarbofunctionalization of alkenes with organotrifluoroborate nucleophiles via radical/polar crossover. Chem Sci 2021; 12:9189-9195. [PMID: 34276949 PMCID: PMC8261722 DOI: 10.1039/d1sc02547c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023] Open
Abstract
Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N-(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation, carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic intricacies of this difunctionalization were elucidated through Stern-Volmer quenching studies, photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates.
Collapse
Affiliation(s)
- María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Anasheh Sookezian
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Stellar-Chance Building, 422 Curie Boulevard Philadelphia Pennsylvania 19104-6059 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
15
|
Jang J, Kim DY. Visible Light Photocatalytic Trifluoromethylation/SET Oxidation/Cycloaddition Sequences of 2‐Vinyl Phenols: Multicomponent Synthesis of 4
H
‐Chromenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jihoon Jang
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538, Chungnam Republic of Korea
| | - Dae Young Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538, Chungnam Republic of Korea
| |
Collapse
|
16
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|