1
|
Xu L, Zhu J, Shen X, Chai J, Shi L, Wu B, Li W, Ma D. 6-Hydroxy Picolinohydrazides Promoted Cu(I)-Catalyzed Hydroxylation Reaction in Water: Machine-Learning Accelerated Ligands Design and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412552. [PMID: 39189301 DOI: 10.1002/anie.202412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024]
Abstract
Hydroxylated (hetero)arenes are privileged motifs in natural products, materials, small-molecule pharmaceuticals and serve as versatile intermediates in synthetic organic chemistry. Herein, we report an efficient Cu(I)/6-hydroxy picolinohydrazide-catalyzed hydroxylation reaction of (hetero)aryl halides (Br, Cl) in water. By establishing machine learning (ML) models, the design of ligands and optimization of reaction conditions were effectively accelerated. The N-(1,3-dimethyl-9H- carbazol-9-yl)-6-hydroxypicolinamide (L32, 6-HPA-DMCA) demonstrated high efficiency for (hetero)aryl bromides, promoting hydroxylation reactions with a minimal catalyst loading of 0.01 mol % (100 ppm) at 80 °C to reach 10000 TON; for substrates containing sensitive functional groups, the catalyst loading needs to be increased to 3.0 mol % under near-room temperature conditions. N-(2,7-Di-tert-butyl-9H-carbazol-9-yl)-6-hydroxypicolinamide (L42, 6-HPA-DTBCA) displayed superior reaction activity for chloride substrates, enabling hydroxylation reactions at 100 °C with 2-3 mol % catalyst loading. These represent the state of art for both lowest catalyst loading and temperature in the copper-catalyzed hydroxylation reactions. Furthermore, this method features a sustainable and environmentally friendly solvent system, accommodates a wide range of substrates, and shows potential for developing robust and scalable synthesis processes for key pharmaceutical intermediates.
Collapse
Affiliation(s)
- Lanting Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jiazhou Zhu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Xiaodong Shen
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Jiashuang Chai
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Lei Shi
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Bin Wu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Wei Li
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Yang L, Yan Y, Cao N, Hao J, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. Ni(I)-Catalyzed Hydroxylation of Aryl Halides with Water under Thermal Catalysis. Org Lett 2022; 24:9431-9435. [PMID: 36534081 DOI: 10.1021/acs.orglett.2c03840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient hydroxylation of (hetero)aryl halides using water as a hydroxyl source via Ni catalysis promoted by PhSiH3 under thermal catalysis is reported. This methodology provides a general procedure to obtain diverse multifunctional pharmaceutically phenols and polyphenols, some of which are proven challenging to be synthesized using literature methods. Mechanism studies demonstrated that the addition of PhSiH3 led to the generation of active Ni(I) species, which catalyze the hydroxylation via a Ni(I)-Ni(III) pathway.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Insights into the α-amylase and α-glucosidase inhibition mechanism of 4-(4-hydroxyphenyl)-but-3-en-2-one from Scutellaria barbata D. Don: enzymatic kinetics, fluorescence spectroscopy and computational simulation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Ni P, Yang L, Shen Y, Zhang L, Ma Y, Sun M, Cheng R, Ye J. Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. J Org Chem 2022; 87:12677-12687. [DOI: 10.1021/acs.joc.2c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Shen
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Katagiri K, Kuriyama M, Yamamoto K, Demizu Y, Onomura O. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Org Lett 2022; 24:5149-5154. [PMID: 35822911 DOI: 10.1021/acs.orglett.2c01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metal-free synthesis of phenols from diaryliodonium salts with water was developed by using N-benzylpyridin-2-one as an organocatalyst. In this process, sterically congested, functionalized, and heterocycle-containing iodonium salts were smoothly converted to the desired products, and the clofibrate and mecloqualone derivatives were also synthesized in high yields. In addition, the gram-scale experiment was successfully carried out with 10 mmol of a sterically congested substrate.
Collapse
Affiliation(s)
- Kotone Katagiri
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Peng D, Zhang Y, Liu XQ, Shang H, Lin G, Jin HY, Liu XF, He R, Shang YH, Xu YH, Luo SP. Highly active and reusable copper phthalocyanine derivatives catalyzed the hydroxylation of (hetero)aryl halides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wang K, Jiang H, Liu H, Chen H, Zhang F. Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols via the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaixuan Wang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huating Jiang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Helong Liu
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huiying Chen
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Fang Zhang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| |
Collapse
|
9
|
Zhu R, Sun Q, Li J, Li L, Gao Q, Wang Y, Fang L. para-Selective hydroxylation of alkyl aryl ethers. Chem Commun (Camb) 2021; 57:13190-13193. [PMID: 34816833 DOI: 10.1039/d1cc06210g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
para-Selective hydroxylation of alkyl aryl ethers is established, which proceeds with a ruthenium(II) catalyst, hypervalent iodine(III) and trifluoroacetic anhydride via a radical mechanism. This protocol tolerates a wide scope of substrates and provides a facile and efficient method for preparing clinical drugs monobenzone and pramocaine on a gram scale.
Collapse
Affiliation(s)
- Runqing Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Qianqian Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Jing Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Luohao Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| |
Collapse
|
10
|
Xue D, Yang L. Transition-Metal-Catalyzed Hydroxylation Reaction of Aryl Halide for the Synthesis of Phenols. Synlett 2021. [DOI: 10.1055/a-1608-5069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractPhenols are important components of pharmaceuticals, biologically active natural products, and materials. Here, we briefly discuss recent advances in catalytic hydroxylation reactions for the synthesis of phenols, with particular attention to our recent work. H2O is proved to be an efficient hydroxide reagent in converting (hetero)aryl halides into the corresponding phenols under synergistic organophotoredox and nickel catalysis. Aryl bromides as well as less reactive aryl chlorides show high reactivity in this catalytic system. This methodology can be applied to the efficient synthesis of diverse phenols and allows the hydroxylation of multifunctional pharmaceutically relevant aryl halides.1 Introduction2 Representative Methods for Transition-Metal-Catalyzed Hydroxylation of (Hetero)Aryl Halides3 Organophotoredox/Ni Dual Catalytic Hydroxylation of Aryl Halides with Water4 Summary and Outlook
Collapse
|
11
|
Zhou J, Bao Z, Wu P, Chen C. Preparation and Synthetic Application of Naproxen-Containing Diaryliodonium Salts. Molecules 2021; 26:3240. [PMID: 34071240 PMCID: PMC8198133 DOI: 10.3390/molecules26113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of naproxen-containing diaryliodonium salts has been realized from naproxen methyl ester and ArI(OH)OTs activated by trimethylsilyl trifluoromethanesulfonate (TMSOTf) in a solvent mixture comprising dichloromethane and 2,2,2-trifluoroethanol (TFE). Those iodonium salts have been successfully used in the functionalization of an aromatic ring of naproxen methyl ester, including fluorination, iodination, alkynylation, arylation, thiophenolation, and amination and esterification reactions. Moreover, further hydrolysis of the obtained 5-iodo-naproxen methyl ester afforded 5-iodo-naproxen.
Collapse
Affiliation(s)
- Jun Zhou
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529000, China;
| | - Zhiyuan Bao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Panpan Wu
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529000, China;
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China;
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Wang D, Qi J, Wang Q. Advances in regioselective functionalization of 9-phenanthrenols. Org Chem Front 2021. [DOI: 10.1039/d1qo00811k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various approaches are discussed for regioselective functionalization and transformation of 9-phenanthrenol and its ether derivatives, which are readily available from phenanthrene in coal tar.
Collapse
Affiliation(s)
- Dongwei Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jianhua Qi
- HaoHua Chemials Co., Ltd. Liaoxi Zone, Siping 136400, Jilin Province, P.R. China
| | - Qifeng Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- HaoHua Chemials Co., Ltd. Liaoxi Zone, Siping 136400, Jilin Province, P.R. China
| |
Collapse
|