1
|
Xiao Y, Huang DW, Liao J, Wang B, Li YL, Wang JY. Fe(III)-Catalyzed Ring Expansion of Cyclopropenone from Olefins via Radicals to Access Pyrone and Indanone Derivatives. Org Lett 2025; 27:814-820. [PMID: 39797810 DOI: 10.1021/acs.orglett.4c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated. This method has mild conditions and wide substrate adaptability and allows the indanone fragment to be conveniently accessed.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Dong-Wei Huang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Jie Liao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Yu-Long Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Chengdu 610039, P. R. China
| |
Collapse
|
2
|
Rodríguez LG, Bonjoch J, Bradshaw B. Metal-Catalyzed Hydrogen Atom Transfer (MHAT) Hydroalkylation with Electron-Deficient Alkynes. Org Lett 2024; 26:10553-10558. [PMID: 39606916 DOI: 10.1021/acs.orglett.4c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We present a novel strategy for olefin construction via the reductive coupling of electron-neutral alkenes with electron-deficient alkynes under metal-catalyzed hydrogen atom transfer conditions. This methodology provides selective access to both trans and the more challenging-to-synthesize cis isomers and permits the olefin to be installed next to sterically hindered centers, key factors in the synthesis of biologically active compounds. The reaction exhibits broad functional group tolerance and proceeds under mild, nontoxic conditions with high atom efficiency.
Collapse
Affiliation(s)
- Laura G Rodríguez
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
3
|
Gharpure SJ, Chavan RS, Narang SR. Iron-Mediated Hydrogen Atom Transfer Radical Cyclization of Alkenyl Indoles and Pyrroles Gives Their Fused Derivatives: Total Synthesis of Bruceolline E and H. Org Lett 2024. [PMID: 38341858 DOI: 10.1021/acs.orglett.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The iron-mediated hydrogen atom transfer (HAT) reaction is efficaciously employed for the synthesis of dihydropyrroloindoles and dihydropyrrolizines via 5-exo-trig radical cyclization where indoles and pyrroles are used as an acceptor. This radical approach has also been extended for the synthesis of tetrahydrocyclopenta[b]indolones via the Baldwin-disfavored 5-endo-trig cyclization pathway. The formal synthesis of bruceolline J and the total synthesis of bruceollines E and H have been expeditiously carried out by employing the former strategy.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupali S Chavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Simran R Narang
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
5
|
Puig J, Bonjoch J, Bradshaw B. Isocyanides as Acceptor Groups in MHAT Reactions with Unactivated Alkenes. Org Lett 2023; 25:6539-6543. [PMID: 37644914 PMCID: PMC10496133 DOI: 10.1021/acs.orglett.3c02358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 08/31/2023]
Abstract
The use of isocyanides as acceptor groups in metal-hydride hydrogen atom transfer (MHAT) coupling reactions with nonactivated alkenes to form heterocycles is described. Monosubstituted alkenes couple and cyclize directly, whereas more substituted alkenes proceed via a two-step, one-pot procedure involving MHAT reductive cyclization followed by a MHAT Minisci coupling upon the addition of acid. To highlight the utility of the methodology, a diverse variety of substituted heterocycles such as phenanthridines, indoles, and isoquinolines were prepared.
Collapse
Affiliation(s)
- Jordi Puig
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Saladrigas M, Gómez-Bengoa E, Bonjoch J, Bradshaw B. Four-Step Synthesis of (-)-4-epi-Presilphiperfolan-8α-ol by Intramolecular Iron Hydride Atom Transfer-Mediated Ketone-Alkene Coupling and Studies to Access trans-Hydrindanols with a Botryane Scaffold. Chemistry 2023; 29:e202203286. [PMID: 36537992 DOI: 10.1002/chem.202203286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
From an (R)-(+)-pulegone-derived building block that incorporates the stereo-defined tertiary carbon bearing a methyl group, as found in the targeted sesquiterpenoid, a four-step synthesis of (-)-4-epi-presilphiperfolan-8-α-ol was achieved. The key processes involved are a ring-closing metathesis leading to a bridged alkene-tethered ketone and its subsequent FeIII -mediated metal-hydride atom transfer (MHAT) transannular cyclization. This synthetic method, implying an irreversible addition of a carbon-centered radical upon a ketone by means of a hydrogen atom transfer upon the alkoxy radical intermediate, was also applied in the synthesis of trans-fused hydrindanols structurally related to botrydial compounds.
Collapse
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Nie YC, Yang F, Li YH, Zhu R. Aldehydes as O-Nucleophiles in Cobalt Hydride Hydrogen Atom Transfer Catalysis: Overriding the Innate Somophilicity. Org Lett 2023; 25:889-894. [PMID: 36722752 DOI: 10.1021/acs.orglett.3c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In metal hydride-catalyzed alkene hydrofunctionalization reactions via hydrogen atom transfer, simple carbonyl groups have been well-recognized as good somophiles at the carbon for C-C bond formation. Here we report an alternative pathway exploring the carbonyl as an O-nucleophile to make new C-O bonds during the CoH-catalyzed oxidative cyclization of alkenyl aldehydes. This reaction provides a rapid, mild, modular, and stereoselective (up to >20:1) entry to saturated O-heterocycles via nucleophilic trapping of an in situ-formed oxocarbenium intermediate. The key to overriding the carbonyl's innate somophilicity was found to be promoting the formation of organocobalt species and suppressing the radical exchange.
Collapse
Affiliation(s)
- Yi-Chen Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Hao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
9
|
Liu H, Laporte AG, Tardieu D, Hazelard D, Compain P. Formal Glycosylation of Quinones with exo-Glycals Enabled by Iron-Mediated Oxidative Radical-Polar Crossover. J Org Chem 2022; 87:13178-13194. [PMID: 36095170 DOI: 10.1021/acs.joc.2c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular C-O coupling reaction of 1,4-quinones with exo-glycals under iron hydride hydrogen atom transfer (HAT) conditions is described. This method provides a direct and regioselective access to a wide range of phenolic O-ketosides related to biologically relevant natural products in diastereomeric ratios up to >98:2 in the furanose and pyranose series. No trace of the corresponding C-glycosylated products that might have resulted from the radical alkylation of 1,4-quinones was observed. The results of mechanistic experiments suggest that the key C-O bond-forming event proceeds through an oxidative radical-polar crossover process involving a single-electron transfer between the HAT-generated glycosyl radical and the electron-acceptor quinone.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
10
|
Gao Y, Zhang B, Levy L, Zhang HJ, Chi H, Baran PS. Ni-Catalyzed Enantioselective Dialkyl Carbinol Synthesis via Decarboxylative Cross-Coupling: Development, Scope, and Applications. J Am Chem Soc 2022; 144:10992-11002. [PMID: 35671374 PMCID: PMC9800071 DOI: 10.1021/jacs.2c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first enantioselective decarboxylative Negishi-type alkylations of α-oxy carboxylic acids are reported via the intermediacy of redox-active esters (RAEs). This transformation enables a radical-based retrosynthesis of seemingly trivial enantiopure dialkyl carbinols. This article includes a discussion of the history of such couplings, the retrosynthetic ramifications of such a coupling, the development of general conditions, and an extensive series of applications that vividly demonstrate how it can simplify synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Phil S. Baran
- Corresponding Author: Phil S. Baran − Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States;
| |
Collapse
|
11
|
Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. A Catalytic Alkylation of Ketones via sp3 C-H Bond Activation. J Org Chem 2022; 88:6333-6346. [PMID: 35649206 DOI: 10.1021/acs.joc.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We identified a ternary hybrid catalyst system composed of an acridinium photoredox catalyst, a thiophosphoric imide (TPI) catalyst, and a titanium complex catalyst that promoted an intermolecular addition reaction of organic molecules with various ketones through sp3 C-H bond activation. The thiyl radical generated via single-electron oxidation of TPI by the excited photoredox catalyst abstracted a hydrogen atom from organic molecules such as toluene, benzyl alcohol, alkenes, aldehydes, and THF. The thus-generated carbon-centered radical species underwent addition to ketones and aldehydes. This intrinsically unfavorable step was promoted by single-electron reduction of the intermediate alkoxy radical by catalytically generated titanium(III) species. This reaction provided an efficient and straightforward route to a broad range of tertiary alcohols and was successfully applied to late-stage functionalization of drugs or their derivatives. The proposed mechanism was supported by both experimental and theoretical studies.
Collapse
Affiliation(s)
- Xue Peng
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Yabu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Takuya Akai
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. Divergent Total Syntheses of (-)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J Am Chem Soc 2022; 144:2495-2500. [PMID: 35112847 DOI: 10.1021/jacs.1c13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hydrogen atom transfer (HAT)-initiated Dowd-Beckwith rearrangement reaction was developed, which enables the efficient assembly of diversely functionalized polyquinane frameworks. By incorporation of an iridium-catalyzed regio- and enantioselective hydrogenation and a diastereocontrolled ODI-[5+2] cycloaddition/pinacol rearrangement cascade reaction, the asymmetric total syntheses of eight tetraquinane natural products, including (-)-crinipellins A-F and (-)-dihydrocrinipellins A and B, have been achieved in a concise and divergent manner.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengping Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Jana K, Studer A. Allylboronic Esters as Acceptors in Radical Addition, Boron 1,2-Migration, and Trapping Cascades. Org Lett 2022; 24:1100-1104. [PMID: 35080407 PMCID: PMC8822490 DOI: 10.1021/acs.orglett.2c00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Radical 1,3-carboheteroarylation
and 1,3-hydroalkylation of allylboronic
esters comprising a 1,2-boron shift is reported. Allylboronic esters
are generally used in synthesis as allylation reagents, where the
boronic ester moiety gets lost. In the introduced cascades, alkylboronic
esters are obtained with the boron entity remaining in the product.
The carboheteroarylation of the allylboronic esters are conducted
without a metal catalyst, and the 1,3-hydroalkylation is achieved
using iron catalysis. Both reactions work efficiently under mild conditions.
Collapse
Affiliation(s)
- Kalipada Jana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
14
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
15
|
Zhu Y, He Y, Tian W, Wang M, Zhou Z, Song X, Ding H, Xiao Q. Dual Cobalt and Photoredox Catalysis Enabled Redox‐Neutral Annulation of 2‐Propynolphenols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yao Zhu
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical Science Nanchang University Nanchang 330006 People's Republic of China
| | - Wan‐Fa Tian
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Mei Wang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Zhao‐Zhao Zhou
- Department of Chemistry Nanchang Normal University Nanchang People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Hai‐Xin Ding
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| |
Collapse
|
16
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
17
|
Zhang B, He J, Li Y, Song T, Fang Y, Li C. Cobalt-Catalyzed Markovnikov-Selective Radical Hydroacylation of Unactivated Alkenes with Acylphosphonates. J Am Chem Soc 2021; 143:4955-4961. [PMID: 33783191 DOI: 10.1021/jacs.1c02629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acylphosphonates having the 5,5-dimethyl-1,3,2-dioxophosphinanyl skeleton are developed as efficient intermolecular radical acylation reagents, which enable the cobalt-catalyzed Markovnikov hydroacylation of unactivated alkenes at room temperature under mild conditions. The protocol exhibits broad substrate scope and wide functional group compatibility, providing branched ketones in satisfactory yields. A mechanism involving the Co-H mediated hydrogen atom transfer and subsequent trapping of alkyl radicals by acylphosphonates is proposed.
Collapse
Affiliation(s)
- Benxiang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiayan He
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yi Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tao Song
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| | - Chaozhong Li
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Xie Y, Huang W, Qin S, Fu S, Liu B. Catalytic radical cascade cyclization of alkene-tethered enones to fused bicyclic cyclopropanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01312b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused bicyclic cyclopropanols were achieved via an unprecedented HAT-triggered radical cascade reaction of alkene-tethered enones in the presence of an iron catalyst.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Wei Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|