1
|
Aebisher D, Serafin I, Batóg-Szczęch K, Dynarowicz K, Chodurek E, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers. Pharmaceuticals (Basel) 2024; 17:932. [PMID: 39065781 PMCID: PMC11279632 DOI: 10.3390/ph17070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | | | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 Str., 41-200 Sosnowiec, Poland;
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
2
|
Sahoo S, Sahoo SS, Nagamaiah J, Rana A, Panda PK. Effect of β-Substitution and β,β'-Fusion on the Formation of Boron Complexes of Porphycenes. Inorg Chem 2023; 62:21443-21450. [PMID: 38060350 DOI: 10.1021/acs.inorgchem.3c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Boron(III) complexation was investigated in a series of β-substituted porphycenes. Unlike meso-arylporphycenes, these macrocycles undergo a facile complexation reaction. Upon fusion of the β,β'-positions of the porphycene ligand, the complexation resulted in fast insertion of boron, forming the cisoid-B2OF2 complex. However, in the case of the other β-substituted porphycenes, only bis-BF2 complexes formed. The effect of these substituents on the core geometry and photophysical properties are elaborated here.
Collapse
Affiliation(s)
- Sameeta Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | | - Anup Rana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Pradeepta K Panda
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Bhat IA, Panda PK. Synthesis of Trifluoromethyl-Substituted [14]Triphyrin(2.1.1), Its Selective Reduction to Triphachlorin, and Stable Isomeric Triphabacteriochlorins via Direct Detrifluoromethylation. Org Lett 2022; 24:9023-9027. [DOI: 10.1021/acs.orglett.2c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ishfaq A. Bhat
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | |
Collapse
|
4
|
Li Z, Zhang L, Wu Q, Li H, Kang Z, Yu C, Hao E, Jiao L. Boron-Templated Synthesis of B(III)-Submonoazaporphyrins: The Hybrids of B(III)-Subporphyrins and B(III)-Subporphyrazines. J Am Chem Soc 2022; 144:6692-6697. [PMID: 35294839 DOI: 10.1021/jacs.2c01671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new class of hybridized and core-contracted porphyrinoids, B(III)-submonoazaporphyrins, which may be viewed as the hybrids of B(III)-subporphyrins and B(III)-subporphyrazines, was reported. The versatile single-step synthesis was based on an efficient intramolecular nucleophilic substitution reaction on readily available α-amino-α'-bromotripyrromethenes, while boronic acids, trifluoroborate salts, or trimethoxyborate simultaneously acted as the template and provider of apical substituent. Those new hybrids, as robust and photostable compounds, were fully characterized by NMR, mass spectrometry, and X-ray crystallography. They showed intense absorption and emission in the visible region, and their electrochemical properties and computational calculation are also discussed.
Collapse
Affiliation(s)
- Zhongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lei Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Bhat IA, Soman R, Chandra B, Sahoo S, Thaltiri V, Panda PK. 10,15-Bis(ethoxycarbonyl)-5-(4-methoxycarbonylphenyl) B(III)subchlorin: A photosensitizer with high singlet oxygen producing efficiency. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel A2B-type B(III)subchlorin has been synthesized for the first time in two ways possessing two different ester moieties upon macrocyclic periphery from meso-diethoxycarbonyl tripyrrane. Its photophysical and electrochemical properties have been explored. Introduction of the third meso-substituent resulted in the synthesis of the B(III)subchlorin as the major product with the formation of minor oxidized B(III)subporphyrin analogue. This subchlorin derivative was found to generate singlet oxygen much efficiently with quantum yield ([Formula: see text] 0.88.
Collapse
Affiliation(s)
- Ishfaq A. Bhat
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Rahul Soman
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Brijesh Chandra
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Sameeta Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Vikranth Thaltiri
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | |
Collapse
|
7
|
Soman R, Chandra B, Bhat IA, Kumar BS, Hossain SS, Nandy S, Jose KVJ, Panda PK. A 2B- and A 3-Type Boron(III)Subchlorins Derived from meso-Diethoxycarbonyltripyrrane: Synthesis and Photophysical Exploration. J Org Chem 2021; 86:10280-10287. [PMID: 34264670 DOI: 10.1021/acs.joc.1c01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first direct fabrication of A2B- and A3-type B(III)subchlorins from meso-ethoxycarbonyl-substituted tripyrrane has been realized by condensation with appropriate acid chlorides (benzoyl chloride, butyryl chloride, and ethyl chlorooxoacetate). The aliphatic acid chloride-based annulation reaction is new to subporphyrinoid chemistry. The phenyl (6a)- or n-propyl (6b)-substituted derivatives could be oxidized to the corresponding B(III)subporphyrins upon refluxing with DDQ, whereas the triethoxycarbonyl moiety (6c) was found to be resistant to oxidation and exhibits the most red-shifted absorption (587 nm) and emission (604 nm). The study indicates that absorption and emission behaviors of the B(III)subchlorin can be tuned by the introduction of electron-rich or electron-deficient substituents at the meso-position. B(III)subchlorins 6a and 6c generate singlet oxygen efficiently (44 and 40%, respectively) and, thus, may find application as potential photosensitizers in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Rahul Soman
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Brijesh Chandra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Ishfaq A Bhat
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - B Sathish Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sridatri Nandy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - K V Jovan Jose
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Pradeepta K Panda
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|