1
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Sugitate K, Yamashiro T, Takahashi I, Yamada K, Abe T. Oxytrofalcatin Puzzle: Total Synthesis and Structural Revision of Oxytrofalcatins B and C. J Org Chem 2023. [PMID: 37433109 DOI: 10.1021/acs.joc.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The previously reported structures of oxytrofalcatins B and C possess a benzoyl indole core. However, following synthesis and NMR comparison of both the proposed structure and the synthesized oxazole, we have revised the structure of oxytrofalcatins B and C as oxazoles. The synthetic route developed herein can further our understanding of the biosynthetic pathways that govern the production of natural 2,5-diaryloxazoles.
Collapse
Affiliation(s)
- Kazuma Sugitate
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Ibuki Takahashi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|
3
|
Yang T, Huang C, Jia J, Wu F, Ni F. A Facile Synthesis of 2-Oxazolines via Dehydrative Cyclization Promoted by Triflic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249042. [PMID: 36558175 PMCID: PMC9781752 DOI: 10.3390/molecules27249042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
2-oxazolines are common moieties in numerous natural products, pharmaceuticals, and functional copolymers. Current methods for synthesizing 2-oxazolines mainly rely on stoichiometric dehydration agents or catalytic dehydration promoted by specific catalysts. These conditions either generate stoichiometric amounts of waste or require forcing azeotropic reflux conditions. As such, a practical and robust method that promotes dehydrative cyclization while generating no byproducts would be attractive to oxazoline production. Herein, we report a triflic acid (TfOH)-promoted dehydrative cyclization of N-(2-hydroxyethyl)amides for synthesizing 2-oxazolines. This reaction tolerates various functional groups and generates water as the only byproduct. This method affords oxazoline with inversion of α-hydroxyl stereochemistry, suggesting that alcohol is activated as a leaving group under these conditions. Furthermore, the one-pot synthesis protocol of 2-oxazolines directly from carboxylic acids and amino alcohols is also provided.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Chengjie Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Jingyang Jia
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (F.W.); (F.N.)
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (F.W.); (F.N.)
| |
Collapse
|
4
|
Lu J, Yao B, Zhan D, Sun Z, Ji Y, Zhang X. One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles. Beilstein J Org Chem 2022; 18:1607-1616. [PMID: 36530533 PMCID: PMC9727273 DOI: 10.3762/bjoc.18.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
A novel four-component reaction in one pot as an atom- and step-economic process was developed to synthesize diastereoselectively spirooxindolepyrrolothiazoles through sequential N,S-acetalation of aldehydes with cysteine and decarboxylative [3 + 2] cycloaddition with olefinic oxindoles. High synthetic efficiency, operational simplification and reaction process economy using EtOH as solvent, and only releasing CO2 and H2O as side products confer this approach favorable in green chemistry metrics analysis.
Collapse
Affiliation(s)
- Juan Lu
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Bin Yao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| | - Desheng Zhan
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Zhuo Sun
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Yun Ji
- Department of Chemical Engineering, University of North Dakota, 241 Centennial Drive Stop 7101, Grand Forks, North Dakota 58202, United States
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| |
Collapse
|
5
|
Zheng Y, Fang X, Deng WH, Zhao B, Liao RZ, Xie Y. Direct activation of alcohols via perrhenate ester formation for an intramolecular dehydrative Friedel–Crafts reaction. Org Chem Front 2022. [DOI: 10.1039/d2qo00229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and highly efficient intramolecular dehydrative Friedel–Crafts reactions via Re2O7 mediated hydroxyl group activation is described for the syntheses of tetrahydronaphthalene, tetrahydroquinoline, tetrahydroisoquinoline, chromane, and isochromane derivatives.
Collapse
Affiliation(s)
- Yuzhu Zheng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiong Fang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bin Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Youwei Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Anderson SM, Van Engen MD, Floreancig PE. Solvent Effects and Mechanistic Studies for Re 2O 7-Catalyzed Allylative Annulation Reactions. J Org Chem 2021; 87:1830-1839. [PMID: 34932336 DOI: 10.1021/acs.joc.1c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequence of allylic alcohol transposition, carbonyl group trapping, oxocarbenium ion formation, and nucleophilic addition results in the formation of a ring while serving as a fragment-coupling and stereocenter-generating reaction. Successful applications of these processes require a balancing of the kinetics of numerous productive and unproductive steps. This work describes the manner in which solvent changes can be used to expand the scope and change the stereochemical outcomes of these processes. Mechanistic studies provide greater insight into the nuances of the transformations and the reactive species that are generated.
Collapse
Affiliation(s)
- Shelby M Anderson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marcus D Van Engen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
8
|
Ledovskaya MS, Polynski MV, Ananikov VP. One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. Chem Asian J 2021; 16:2286-2297. [PMID: 34152671 DOI: 10.1002/asia.202100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Indexed: 01/03/2023]
Abstract
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.
Collapse
Affiliation(s)
- Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
9
|
Floreancig PE. Perrhenate Esters as Intermediates in Molecular Complexity-Increasing Reactions. Synlett 2021. [DOI: 10.1055/a-1377-0346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractAllylic alcohols form perrhenate esters upon reaction with Re2O7 or HOReO3. These species undergo nonstereospecific and nonregiospecific alcohol-transposition reactions through cationic intermediates. Sequencing these nonselective processes with reversible trapping by electrophiles results in cyclization reactions where regio- and stereocontrol are dictated by thermodynamics. The cationic intermediates can also be utilized as electrophiles in intra- or intermolecular dehydrative reactions with nucleophiles. These processes serve as the basis for applications in catalytic syntheses of a wide range of heterocyclic and carbocyclic structures that often show considerable increases in molecular complexity. This Account describes a sequence of events that started from a need to solve a problem for the completion of a natural product synthesis and evolved into a central element in the design of numerous new transformations that proceed under mild conditions from readily accessible substrates.1 Introduction2 Exploratory Studies3 Application to Spiroketal Synthesis4 Reactions with Epoxides as Trapping Agents5 Development of Dehydrative Cyclizations6 Bimolecular Reactions7 Spirocyclic Ether Formation8 Conclusions
Collapse
|