1
|
Chen J, Tang J, Jiang ZJ, Chen J, Gao Z, Bai JF. Cooperative silver-base catalysis for multi-deuteration of heterocyclic N-oxides with D 2O. Org Biomol Chem 2025; 23:4622-4627. [PMID: 40237372 DOI: 10.1039/d5ob00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
To address the challenges associated with the direct deuteration of quinoline, a novel synthetic strategy utilizing quinoline-N-oxides as starting materials has been developed. This approach enables efficient multi-deuteration of quinoline-N-oxides under mild conditions, employing AgOAc and triphenylphosphine as catalytic components, with D2O as the deuterium source. The reaction demonstrates broad functional group tolerance, facilitating the deuteration of a diverse range of quinoline-, isoquinoline-, and pyridine-N-oxide derivatives. Mechanistic studies exclude a radical pathway and highlight the critical role of nitrogen-oxygen bonds in stabilizing key intermediates. Notably, deuteration at the C2 position is exclusively driven by K2CO3 as the base, while deuteration at other positions requires the cooperative action of silver salts. Furthermore, a tentative two-stage deuteration mechanism involving aryl-silver intermediates is proposed to explain the selective deuteration at other positions.
Collapse
Affiliation(s)
- Jiayi Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
- Ningbo Cuiying Chemical Technology Co. Ltd, Ningbo 315100, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
2
|
Dey J, Kaltenberger S, van Gemmeren M. Palladium(II)-Catalyzed Nondirected Late-Stage C(sp 2)-H Deuteration of Heteroarenes Enabled Through a Multi-Substrate Screening Approach. Angew Chem Int Ed Engl 2024; 63:e202404421. [PMID: 38512005 DOI: 10.1002/anie.202404421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
The importance of deuterium labelling in a variety of applications, ranging from mechanistic studies to drug-discovery, has spurred immense interest in the development of new methods for its efficient incorporation in organic, and especially in bioactive molecules. The five-membered heteroarenes at the center of this work are ubiquitous motifs in bioactive molecules and efficient methods for the deuterium labelling of these compounds are therefore highly desirable. However, the profound differences in chemical properties encountered between different heteroarenes hamper the development of a single set of broadly applicable reaction conditions, often necessitating a separate optimization campaign for a given type of heteroarene. In this study we describe the use of a multi-substrate screening approach to identify optimal reaction conditions for different classes of heteroarenes from a minimal number of screening reactions. Using this approach, four sets of complementary reaction conditions derived from our dual ligand-based palladium catalysts for nondirected C(sp2)-H activation were identified, that together enable the deuteration of structurally diverse heteroarenes, including bioactive molecules.
Collapse
Affiliation(s)
- Jyotirmoy Dey
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Simon Kaltenberger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| |
Collapse
|
3
|
Xu H, Jiang ZJ, Jia Y, Su Y, Bai JF, Gao Z, Chen J, Gao K. H/D Exchange of Aromatic Sulfones via Base Promotion and Silver Catalysis. J Org Chem 2024; 89:8468-8477. [PMID: 38856238 DOI: 10.1021/acs.joc.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Aromatic sulfones are the prevailing scaffolds in pharmaceutical and material sciences. However, compared to their widespread application, the selective deuterium labeling of these structures is restricted due to their electron-deficient properties. This study presents two comprehensive strategies for the deuteration of aromatic sulfones. The base-promoted deuteration uses DMSO-d6 as the deuterium source, resulting in a rapid H/D exchange within 2 h. Meanwhile, a silver-catalyzed protocol offers a much milder option by using economical D2O to furnish the labeled sulfones.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Yun Jia
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Yuhang Su
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| | - Kun Gao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
4
|
Shao F, Ma F, Li Y, Jiang W, Wei Z, Zhong X, Wang H, Wang L, Wang J. Ru Supported on p-phthalic acid-Mn Derived from a Mn Metal-Organic Framework for Thermo- and Electrocatalytic Synthesis of Ethylene-D4 Glycol. CHEMSUSCHEM 2023; 16:e202202395. [PMID: 37012670 DOI: 10.1002/cssc.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.
Collapse
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fandong Ma
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanan Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjie Jiang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ligeng Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
5
|
Damont A, Legrand A, Cao C, Fenaille F, Tabet JC. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. MASS SPECTROMETRY REVIEWS 2023; 42:1300-1331. [PMID: 34859466 DOI: 10.1002/mas.21765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Collapse
Affiliation(s)
- Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Anaïs Legrand
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Chenqin Cao
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Gu JG, Wang CX, Hu GQ, Shen K, Zhang HH. K 2CO 3/18-Crown-6-Catalyzed Selective H/D Exchange of Heteroarenes with Bromide as a Removable Directing Group. Org Lett 2023; 25:3055-3059. [PMID: 37126411 DOI: 10.1021/acs.orglett.3c00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The K2CO3/18-crown-6-catalyzed H/D exchange of heretoarenes in high atom % deuterium incorporation is disclosed. The use of a weak base as a catalyst leads to excellent site selectivity and broad functional group tolerance. Control experiments indicated that the use of bromide, which enhances the adjacent C-H bond reactivity, as a removable directing group is essential. Moreover, conversion of bromide to other functional groups is also performed to construct other useful deuterated compounds.
Collapse
Affiliation(s)
- Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Tang J, Kong J, Xu H, Jiang ZJ, She Y, Bai J, Tang B, Chen J, Gao Z, Gao K. Multideuteration of Nitroaromatics by Silver-Catalyzed Hydrogen-Isotope Exchange. J Org Chem 2023; 88:1560-1567. [PMID: 36634252 DOI: 10.1021/acs.joc.2c02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Silver-catalyzed deuteration of nitroaromatics has been achieved using D2O as the deuterium source. Distinct from the well-established directing group-guided hydrogen-isotope exchange, this protocol showed an interesting deuteration pattern, where considerable deuterium accumulation was observed around the aromatic rings. Controlling experiments suggested that the deuteration was initiated by a silver-promoted C-H activation. Therefore, a tentative two-stage deuteration mechanism involving aryl-silver species was proposed to explain the deuteration on meta- and para-positions.
Collapse
Affiliation(s)
- Jianbo Tang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Junhua Kong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Hui Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yifan She
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Jianfei Bai
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Bencan Tang
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China.,Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315100, P. R. China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Sheng FF, Gu JG, Liu KH, Zhang HH. Synthesis of β-Deuterated Amino Acids via Palladium-Catalyzed H/D Exchange. J Org Chem 2022; 87:16084-16089. [PMID: 36395460 DOI: 10.1021/acs.joc.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite several synthetic approaches that have been developed for α-deuterated amino acids, the synthesis of β-deuterated amino acids has remained a challenge. Herein, we disclose a palladium catalyzed H/D exchange protocol for a β-deuterated N-protected amino amide, which can be converted to a β-deuterated amino acid simply by removal of protecting groups. This protocol is highly efficient, simply manipulated, and appliable for deuterium-labeling of many amino amides. In addition, deuterium labeling of phenylalanine derivatives was also successful when pivalic acid served as an additive to promote the H/D exchange process.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Xiang Z, Huang S, Zhao LL, Zhang Z, Chen K, Cao W, Zheng K, Yan X. Base-catalyzed H/D exchange of polychlorinated biphenyls. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Fischer R, Görls H, Suxdorf R, Westerhausen M. Phenylchromium(III) Chemistry Revisited 100 Years after Franz Hein (Part III): From (Ar) 3–nCrCl n(L) x (Ar = Ph, p-F-C 6H 4, C 6D 5; n = 0, 1, 2; L = thf, dme, tmeda, 12C4) to Bis(π-arene)chromium Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reinald Fischer
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Regina Suxdorf
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| |
Collapse
|
11
|
He T, Klare HFT, Oestreich M. Perdeuteration of Deactivated Aryl Halides by H/D Exchange under Superelectrophile Catalysis. J Am Chem Soc 2022; 144:4734-4738. [PMID: 35258291 DOI: 10.1021/jacs.2c00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Superelectrophilic silylium/arenium ions are shown to be highly effective H/D exchange promoters for the exhaustive deuteration of electron-deficient aryl halides. Several of the resulting perdeuterated aryl halides have been previously inaccessible with existing deuterium-labeling procedures. Using inexpensive C6D6 as the deuterium source, excellent degrees of deuterium incorporation were achieved under ambient reaction conditions. Importantly, the perdeuteration remains unaffected on multigram scale, even at a reduced catalyst loading of 0.1 mol %. By this method, otherwise expensive or noncommercially available NMR solvents such as 1,2-dichloro- and 1,2-difluorobenzene can be prepared.
Collapse
Affiliation(s)
- Tao He
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
12
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
13
|
Sheng FF, Li EC, Bai JW, Wang CX, Hu GQ, Liu KH, Sun ZY, Shen K, Zhang HH. Silver salt enabled H/D exchange at the β-position of thiophene rings: synthesis of fully deuterated thiophene derivatives. Org Biomol Chem 2022; 20:1176-1180. [PMID: 35044395 DOI: 10.1039/d1ob02285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclose a silver catalyzed H/D exchange reaction, which can introduce the deuterium atom at the β position of thiophene rings without the assistance of any coordinating groups. The advantages of this reaction include operation in open air, usage of D2O as the deuterium source, good tolerance to a range of functional groups and obtaining high atom% deuterium incorporation. In addition, this H/D exchange reaction is employed for direct deuteration of a thiophene based monomer, which is usually prepared by multistep synthesis from expensive deuterated starting materials.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - En-Ci Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Jing-Wen Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Zheng-Yi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China. .,Neutron Scattering Division & Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.
| |
Collapse
|
14
|
Kong J, Jiang ZJ, Xu J, Li Y, Cao H, Ding Y, Tang B, Chen J, Gao Z. Ortho-Deuteration of Aromatic Aldehydes via a Transient Directing Group-Enabled Pd-Catalyzed Hydrogen Isotope Exchange. J Org Chem 2021; 86:13350-13359. [PMID: 34516112 DOI: 10.1021/acs.joc.1c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and scalable ortho-selective deuteration of aromatic aldehydes was accomplished by Pd-catalyzed hydrogen isotope exchange with deuterium oxide as an inexpensive deuterium source. The use of tert-leucine as a transient directing group facilitates the exchange, affording a wide range of ortho-deuterated aromatic aldehydes with deuterium incorporation up to 97%. The control experiments suggest that the addition of silver trifluoroacetate resists the unexpected reduction of Pd(II), while the theoretical study indicates a rapid reversible concerted metalation-deprotonation process.
Collapse
Affiliation(s)
- Junhua Kong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Jiayuan Xu
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Yan Li
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Hong Cao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yanan Ding
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| |
Collapse
|
15
|
Liu KH, Hu GQ, Wang CX, Sheng FF, Bai JW, Gu JG, Zhang HH. C-H Bond Functionalization of (Hetero)aryl Bromide Enabled Synthesis of Brominated Biaryl Compounds. Org Lett 2021; 23:5626-5630. [PMID: 34269061 DOI: 10.1021/acs.orglett.1c01613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aryl bromide is one of the most important compounds in organic chemistry, because it is widely used as synthetic building blocks enabling quick access to a wide array of bioactive molecules, organic materials, and polymers via the versatile cutting-edge transformations of C-Br bond. Direct C-H bond functionalization of aryl bromide is considered to be an efficient way to prepare functionalized aryl bromides; however, it is rarely explored possibly due to the relatively low reactivity of aryl bromide toward C-H bond activation. We herein report a palladium-catalyzed coupling reaction between aryl iodide and aryl bromide for preparing brominated biaryl compounds via a silver-mediated C-H bond activation pathway.
Collapse
Affiliation(s)
- Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jing-Wen Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|