1
|
Xuan T, Wang X, Wang Y. Asymmetric [3+2] Cycloannulation of Benzoxazinones for the Synthesis of Imidazo[5,1- c]oxazinones. Org Lett 2025; 27:3134-3138. [PMID: 40126411 DOI: 10.1021/acs.orglett.5c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The asymmetric catalytic [3+2] cycloannulation of benzoxazinones with isatin-derived ketimines for the efficient construction of imidazo[5,1-c]oxazinones has been developed, which realized the first asymmetric reaction of benzoxazinones with excellent stereoselectivities. A series of imidazo[5,1-c]oxazinones containing three stereogenic centers with one gem-diamine-type spiro tetrasubstituted center were obtained in this organocatalytic reaction with good yields and high functional group tolerance.
Collapse
Affiliation(s)
- Tengfei Xuan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xia Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Sun B, Liang YT, Xiang MT, Ai JT, Wang S, Zhong H, Yang J, Xiang HY. Transition-metal-free phosphorylation of polyfluoroarenes with P(O)H compounds. Org Biomol Chem 2025; 23:2358-2361. [PMID: 39902545 DOI: 10.1039/d4ob02100b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Herein, a base-promoted C-P(O) bond formation method has been developed for the phosphorylation of polyfluoroarenes through selective C-F bond cleavage. The high selectivity and mild, transition-metal-free conditions of this method underscore its potential for sustainable synthesis applications. This method expands the scope of polyfluoroarene functionalization, providing a valuable tool for incorporating phosphorus motifs in complex aromatic frameworks.
Collapse
Affiliation(s)
- Bingqian Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yu-Ting Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Meng-Ting Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-Tao Ai
- Hunan Drug Inspection Center, Changsha, 410001, P. R. China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
3
|
Lin Y, Zhou X, Zheng Y, Chen B, Liu Y, Zhang Y, Yan Q, Wang W, Chen F. Visible light-promoted C3-H alkoxycarbonylation of quinoxalin-2(1 H)-ones or coumarins with alkyloxalyl chlorides. Org Biomol Chem 2024; 22:8591-8595. [PMID: 39377703 DOI: 10.1039/d4ob01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Herein, we describe a green and efficient photoredox catalytic C3-H alkoxycarbonylation between quinoxalin-2(1H)-ones or coumarins and readily available alkyloxalyl chlorides under ambient conditions. A series of quinoxaline-3-carbonyl and coumarin-3-carbonyl compounds are prepared through the radical addition of in situ-generated alkoxycarbonyl radicals. Notably, this protocol features mild conditions, operational simplicity, and excellent functional group tolerance. More importantly, the carboxylated products can be readily derivatized into other important compounds that would be of great potential for the exploitation of pharmaceutically active compounds.
Collapse
Affiliation(s)
- Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Xi Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yixuan Zheng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Bingran Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yi Zhang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Khorasani F, Ranjbar-Karimi R, Mohammadiannejad K. Utilizing perhalopyridine-based alkynes as suitable precursors for the synthesis of novel poly(1,2,3-triazolyl)-substituted perhalopyridines. RSC Adv 2024; 14:30873-30885. [PMID: 39346527 PMCID: PMC11427873 DOI: 10.1039/d4ra05861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
A novel series of poly(1,2,3-triazolyl)-substituted perhalopyridines 5a-f were successfully synthesized from the click reaction of the terminal alkynes (drived from the nucleophilic substitution reactions of PFP 1a and PCP 1b with excess amounts of propargyl alcohol) with aryl azides 4a-c under ultrasonic irradiation. Likewise, the sonication of reaction mixtures containing pyridyl cores 3, alkyl bromides 6a,b, and NaN3 under one-pot conditions afforded their respective aliphatic 1,2,3-triazoles 7a-d in yields ranging from 71% to 83%. We next developed an effective method for the regioselective preparation of 2,3,4,5-tetrachloro-6-(prop-2-yn-1-yloxy)pyridine 3c through SNAr reaction of PCP with propargyl alcohol without the utilization of any catalyst. It was then used to fabricate several ((1,2,3-triazol-4-yl)methoxy)-3,4,5,6-tetrachloropyridines 8a-c under the reaction conditions. Finally, the Pd(PPh3)4-catalyzed SMC reaction of tris-triazoles 5b,e with arylboronic acids 9a-c offered a practical method for the synthesis of biaryl-embedded poly(1,2,3-triazoles) 10a-f in good yields.
Collapse
Affiliation(s)
- Fereshteh Khorasani
- Department of Chemistry, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran +98-343-131-2429 +98 391 320 2162
| | - Reza Ranjbar-Karimi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran +98-343-131-2429 +98 391 320 2162
| | - Kazem Mohammadiannejad
- NMR Laboratory, Faculty of Science, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran
| |
Collapse
|
5
|
Niwetmarin W, Saesian N, Saruengkhanphasit R, Eurtivong C, Thasana N, Ruchirawat S. Metal- and photocatalyst-free approach to visible-light-induced acylation of quinoxalinones. Org Biomol Chem 2024; 22:5924-5929. [PMID: 38698760 DOI: 10.1039/d4ob00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A transition-metal- and photocatalyst-free photochemical reaction was successfully developed for the direct acylation of quinoxalin-2(1H)-ones, which was enabled by the formation of electron donor-acceptor (EDA) complexes. The use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the electron donor allows efficient and operationally simple access to a series of C3-aroylated and acylated quinoxalin-2(1H)-ones with moderate to good yields.
Collapse
Affiliation(s)
- Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Naiyana Saesian
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
| | | | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
6
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
7
|
Jiao H, Jing Y, Niu K, Song H, Liu Y, Wang Q. Photoinduced Dehydrogenative Amination of Quinoxalin-2(1 H)-ones with Air as an Oxidant. J Org Chem 2024; 89:5371-5381. [PMID: 38551317 DOI: 10.1021/acs.joc.3c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A facile and eco-friendly photoinduced dehydrogenative amination of quinoxalin-2(1H)-ones with aliphatic amines without any metal, strong oxidant, and photocatalyst has been established for the first time. This reaction proceeding efficiently with air as the sole oxidant at room temperature obtains a wide range of 3-aminoquinoxaline-2(1H)-ones in high yields with excellent functional group tolerance. The mechanistic studies show an interesting involvement of quinoxalin-2(1H)-ones as a photosensitizer, which eliminates the requirement for external photocatalysts.
Collapse
Affiliation(s)
- Haoran Jiao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Zhou T, Xuan L, Lin Y, Li F, Wang H, Lyu J, Yan Q, Zhou H, Wang W, Chen FE. Visible-Light-Driven C,N-Selective Heteroarylation of N-Fluoroalkyl Hydroxylamine Reagents with Quinoxalin-2(1 H)-ones. Org Lett 2023. [PMID: 37991496 DOI: 10.1021/acs.orglett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein, we disclose a direct and powerful strategy for the synthesis of highly valuable α-trifluoromethylamine and N-trifluoroethylamine derivatives from a visible-light-promoted C,N-selective heteroarylation of N-trifluoroethyl hydroxylamine reagents with quinoxalin-2(1H)-ones under ambient conditions. The chemoselectivity of the process (trifluoroalkylation or N-trifluoroethylamination) can easily be dictated and modulated by a selection of N-trifluoroethyl hydroxylamine substrates. The key to success is the protecting group on the N atom of hydroxylamine reagents, which can control the process of 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Remarkable features of this method include mild conditions, easy operation, high selectivity, and excellent functional group tolerability. More importantly, the trifluoroalkylated products can be readily derivatized into other interesting imidazo-fused heterocycles that would be of great potential for the exploitation of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fuqi Li
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jian Lyu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
9
|
Gao J, He XC, Liu YL, Ye ZP, Guan JP, Chen K, Xiang HY, Yang H. Photoredox/Nickel Dual Catalysis-Enabled Cross-Dehydrogenative C-H Amination of Indoles with Unactivated Amine. Org Lett 2023; 25:7716-7720. [PMID: 37842950 DOI: 10.1021/acs.orglett.3c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, a direct cross-dehydrogenative C-H amination of indoles has been successfully achieved, enabled by the merger of photocatalysis with nickel catalysis. This developed process does not require stoichiometric oxidants and prefunctionalization of amine partners, providing a concise platform for C-N bond formation. Moreover, the synthetic practicality of this transformation was well revealed by its high step- and atom-economy, high reaction efficiency, and broad functional group tolerance.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
10
|
Deng KY, Wang ZW, Xie ZZ, He JT, Guan JP, Chen K, Xiang HY, Yang H. Photocatalysed C-H amidation of indoles enabled by tert-butyl alkyl((perfluoropyridin-4-yl)oxy)carbamate. Chem Commun (Camb) 2023; 59:11401-11404. [PMID: 37668188 DOI: 10.1039/d3cc03532h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Development of a new catalytic and straightforward strategy to construct C-N bonds is playing a pivotal role in synthetic chemistry. Here, we report a photocatalysed protocol to access direct C-H amidation of indoles, enabled by a rationally designed tert-butyl alkyl((perfluoropyridin-4-yl)oxy)carbamate. A series of biologically important aminoindoles were prepared under mild conditions with excellent regioselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
11
|
More DA, Shirsath SR, Muthukrishnan M. Metal- and Photocatalyst-Free, Visible-Light-Initiated C3 α-Aminomethylation of Quinoxalin-2(1 H)-ones via Electron Donor-Acceptor Complexes. J Org Chem 2023; 88:13339-13350. [PMID: 37651188 DOI: 10.1021/acs.joc.3c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report a metal- and photocatalyst-free C3 α-aminomethylation of quinoxalin-2(1H)-ones with N-alkyl-N-methylanilines. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between quinoxalin-2(1H)-ones and N-alkyl-N-methylanilines. The present method provides a mild and environmentally friendly protocol that exhibits good atom economy and excellent functional group tolerance to obtain a library of biologically significant C3 α-aminomethylated quinoxalin-2(1H)-ones in good yields.
Collapse
Affiliation(s)
- Devidas A More
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Shirsath
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Muthukrishnan
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Yuan CP, Xie ZZ, Zheng Y, He JT, Guan JP, Chen HB, Xiang HY, Chen K, Yang H. N-Chlorosulfonyl carbamate-enabled, photoinduced amidation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2023; 59:10125-10128. [PMID: 37491978 DOI: 10.1039/d3cc02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Reported herein is the design and development of a new photo-induced amidation protocol with the readily available N-chlorosulfonyl carbamate as an effective amidyl-radical precursor, which could be readily prepared from commercial low-cost chlorosulfonyl isocyanate (CSI) and alcohol feedstocks. The synthetic potency of this developed protocol was well demonstrated by direct amidation of various quinoxalin-2(1H)-ones. The protocol could be further streamlined by implementing a one-pot/two-step/three-component process of CSI, alcohol, and quinoxalin-2(1H)-one, with significantly improved reaction efficiency. This methodology offers an intriguing opportunity for rapid expansion of nitrogen-containing molecular complexity, thus inspiring comprehensive exploration of a new reaction mode of CSI reagent.
Collapse
Affiliation(s)
- Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
13
|
Khade VV, Bhowmick A, Thube AS, Bhat RG. Direct Access to Strained Fused Dihalo-Aziridino Quinoxalinones via C3-Alkylation Followed by Tandem Cyclization. J Org Chem 2023. [PMID: 37262098 DOI: 10.1021/acs.joc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quinoxalinones are a privileged class of compounds, and their structural framework is found in many bioactive compounds, natural compounds, and pharmaceuticals. Quinoxalinone is a promising scaffold for different types of functionalization, and the slight modification of the quinoxalinone skeleton is known to offer a wide range of compounds for drug discovery. Owing to the importance of the quinoxalinone scaffold, we have developed a base-mediated protocol for the C3-alkylation of quinoxalinone followed by tandem cyclization to access novel types of strenuous and fused dihalo-aziridino-quinoxalinone heterocycles via the construction of C-C and C-N bonds. The protocol proved to be simple and practical to access desired fused quinoxalinone heterocycles in excellent yields (up to 98% yield). As an application, the highly functionalized fused dihalo-aziridino-quinoxalinone molecule has been further utilized for mono-dehalogenation under visible light irradiation and selective amide reduction. Moreover, the protocol has also been demonstrated on a gram scale.
Collapse
Affiliation(s)
- Vikas V Khade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
14
|
Bisoyi A, Tripathy AR, Yedase GS, P SS, Choudhury U, Yatham VR. Photoinduced Decarboxylative C3-H Alkylation of Quinoxalin-2(1 H)-ones. J Org Chem 2023; 88:2631-2641. [PMID: 36734694 DOI: 10.1021/acs.joc.2c02823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient, catalyst- and additive-free, visible-light-driven radical C3-H alkylation of quinoxalin-2(1H)-one derivatives has been developed. This reaction utilizes alkyl-NHP-esters as an alkyl radical donor and quinoxalin-2(1H)-one derivatives as an alkyl radical acceptor. The operationally simple protocol works under mild reaction conditions and tolerates a variety of functional groups. Furthermore, the synthetic utility of the methodology was successfully implemented for synthesizing biologically relevant C3-alkyl substituted quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Shifana Sinu P
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Udita Choudhury
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
15
|
Wu MC, Li MZ, Chen JY, Xiao JA, Xiang HY, Chen K, Yang H. Photoredox-catalysed chlorination of quinoxalin-2(1 H)-ones enabled by using CHCl 3 as a chlorine source. Chem Commun (Camb) 2022; 58:11591-11594. [PMID: 36169082 DOI: 10.1039/d2cc04520f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalysed chlorination of quinoxalin-2(1H)-ones was developed by using CHCl3 as a chlorine source, thus affording various 3-chloroquinoxalin-2(1H)-ones in moderate to high yields. This protocol is characterized by mild reaction conditions, excellent regioselectivity, and readily available chlorination agent. Considering the operational simplicity and low cost of this chlorination approach, this developed method offers an innovative pathway for rapid incorporation of chlorine functionality into heteroarenes, and will inspire broader exploitation of new chlorination strategies.
Collapse
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jia-Yi Chen
- The First High School of Changsha, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
16
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
17
|
Zheng Y, Lu W, Xie Z, Chen K, Xiang H, Yang H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org Lett 2022; 24:5407-5411. [PMID: 35848222 DOI: 10.1021/acs.orglett.2c02101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a photoinduced palladium-catalyzed annulation of 1,3-dienes with bifunctional halognated alkylamines has been developed, offering a facile route to access a broad range of vinylpyrrolidines. The reactivity profile of this protocol was able to be readily manipulated to assemble vinylpyrrolidine and vinlysilaazacycle. Remarkably, the utility of this strategy was further illustrated in the construction of complex and biologically important molecules as well as the diversity-oriented transformations of the resulting product.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Weidong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
18
|
Gao J, Ye ZP, Liu YF, He XC, Guan JP, Liu F, Chen K, Xiang HY, Chen XQ, Yang H. Visible-Light-Promoted Cross-Coupling of O-Aryl Oximes and Nitrostyrenes to Access Cyanoalkylated Alkenes. Org Lett 2022; 24:4640-4644. [PMID: 35729079 DOI: 10.1021/acs.orglett.2c01750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoinduced, photocatalyst-free cyanoalkylation of nitrostyenes was explored, affording a series of cyanoalkylated alkenes in moderate to good yields. Mechanistic studies reveal that an electron donor-acceptor complex formed between O-aryl oximes and DIPEA is presumably involved in this process. The excellent functional group compatibility of this newly designed synthetic protocol allows for cyanoalkylation of structurally varied substrates, which offers an eco-friendly pathway for the assembly of cyanoalkylated alkenes.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yu-Fei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
19
|
Li X, Zang J, Wang S, Kang C, Xu J, Jiang G, Ji F. Metal & Surfactant-Free Oxidation of Quinoxalin-2(1H)-ones: Access to Quinoxaline-2,3-diones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Zhang Y, Chen Y, Sun J, Wang J, Zhou M. Visible‐light‐promoted Radical Cyclization/Arylation Cascade for the Construction of
α,
α
‐Difluoro‐
γ
‐Lactam‐Fused
Quinoxalin‐2(
1
H
)‐Ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yun‐Chao Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Yang Chen
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing‐Yun Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
21
|
Wang ZW, Zheng Y, Qian YE, Guan JP, Lu WD, Yuan CP, Xiao JA, Chen K, Xiang HY, Yang H. Photoredox-Catalyzed Cascade of o-Hydroxyarylenaminones to Access 3-Aminated Chromones. J Org Chem 2022; 87:1477-1484. [PMID: 35014269 DOI: 10.1021/acs.joc.1c02796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reported herein is a photoredox-catalyzed amination of o-hydroxyarylenaminones with tert-butyl ((perfluoropyridin-4-yl)oxy)carbamate, a versatile amidyl-radical precursor developed in our laboratory. This work establishes a new cascade pathway for the assembly of a range of 3-aminochromones under mild conditions. Downstream transformations of the obtained 3-aminochromones to construct diverse amino pyrimidines greatly broaden the applications of this photocatalyzed protocol.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Wei-Dong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
22
|
Sun K, Xiao F, Yu B, He WM. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63850-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Byun Y, Moon J, An W, Mishra NK, Kim HS, Ghosh P, Kim IS. Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. J Org Chem 2021; 86:12247-12256. [PMID: 34406002 DOI: 10.1021/acs.joc.1c01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct functionalization of N-heterocycles is a vital transformation for the development of pharmaceuticals, functional materials, and other chemical entities. Herein, the transition-metal-free alkylation and acylation of C(sp2)-H bonds in biologically relevant 2-benzoxazinones with 1,4-dihydropyridines as readily accessible radical surrogates is described. Excellent functional group compatibility and a broad substrate scope were attained. Gram-scale reaction and transformations of the synthesized adducts via Suzuki coupling with heteroaryl boronic acids demonstrated the synthetic potential of the developed protocol.
Collapse
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Yuan JW, Zhang Y, Huang GC, Ma MY, Yang TY, Yang LR, Zhang SR, Mao P, Qu LB. Site-specific C–H chalcogenation of quinoxalin-2(1 H)-ones enabled by Selectfluor reagent. Org Chem Front 2021. [DOI: 10.1039/d1qo01332g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A site-specific C6–H chalcogenation of quinoxalin-2(1H)-ones with various diselenides and dithiols is presented by employing Selectfluor reagent as an oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Chao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Meng-Yao Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Teng-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Zhong S, Deng GJ, Dai Z, Huang H. Visible-light-induced 4CzIPN/LiBr system: a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls. Org Chem Front 2021. [DOI: 10.1039/d1qo00634g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A mild visible-light-induced photoredox system was found to be a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls.
Collapse
Affiliation(s)
- Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Zhiqi Dai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
26
|
Kiran, Rani P, Chahal S, Sindhu J, Kumar S, Varma RS, Singh R. Transition metal-free C-3 functionalization of quinoxalin-2(1 H)-ones: recent advances and sanguine future. NEW J CHEM 2021. [DOI: 10.1039/d1nj03445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A gradual shift from metal-catalyzed to metal-free methods is occurring, as the latter are more environmentally benign. This review discusses sustainable protocols for the construction of C–C, C–N, C–P, C–S, and C–O bonds via C–H functionalization of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| |
Collapse
|