1
|
Lan H, Liu Y, Ackermann L, Wang L, Wang D. Ruthenium(II)-Catalyzed Remote C-H Alkylation of Arenes Using Diverse N-Directing Groups through Aziridine Ring Opening. Org Lett 2024; 26:7993-7998. [PMID: 39264308 DOI: 10.1021/acs.orglett.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An efficient approach for the remote C-H alkylation of arenes, employing a variety of N-directing groups is described. This method facilitates the straightforward synthesis of valuable phenylethylamine derivatives by exclusively cleaving the benzylic C-N bond in aziridines. Furthermore, these products can easily remove the protecting groups, resulting in a variety of meta-substituted compounds, such as amines and ketones, which hold significance in synthetic chemistry.
Collapse
Affiliation(s)
- Hongyan Lan
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yingzhen Liu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
2
|
Li Z, Shi Z. Late-Stage Diversification of Phosphines by C-H Activation: A Robust Strategy for Ligand Design and Preparation. Acc Chem Res 2024; 57:1057-1072. [PMID: 38488874 DOI: 10.1021/acs.accounts.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
ConspectusThe advent of the twenty-first century marked a golden era in the realm of synthetic chemistry, exemplified by groundbreaking advancements in the field of C-H activation, which is a concept that quickly transitioned from mere academic fascination to an essential element within the synthetic chemist's toolkit. This methodological breakthrough has given rise to a wealth of opportunities spanning a wide range of chemical disciplines. It has facilitated the late-stage diversification of elaborate organic frameworks, encompassing the spectrum from simple methane to complex polymers, thus refining the lead optimization process and easing the production of diverse molecular analogues. Among these strides forward, the development of phosphorus(III)-directed C-H activation stands out as an increasingly significant and inventive approach for the design and synthesis of ligands, substantially redefining the contours of synthetic methodology.Phosphines, renowned for their roles as ligands and organocatalysts, have become fundamentally important in modern organic chemistry. Their efficiency as ligands is significantly affected by coordination with transition metals, which is essential for their involvement in catalytic processes, influencing both the catalytic activity and the selectivity. Historically, the fabrication of phosphines predominantly relied on synthesis employing complex, multistep procedures. Addressing this limitation, our research has delved into ligand design and synthesis through innovative catalytic P(III)-directed C-H activation strategies. In this Account, we have explored a spectrum of procedures, including direct arylation using metal catalysis, and ventured further into domains such as C-H alkylation, alkenylation, aminocarbonylation, alkynylation, borylation, and silylation. These advances have enriched the field by providing efficient methods for the late-stage diversification of biaryl-type monophosphines as well as enabled the C-H activation of triphenylphosphine and its derivatives. Moreover, we have successfully constructed libraries of diverse axially chiral binaphthyl phosphine ligands, showcasing their potency in asymmetric catalysis. Through this Account, we aim to illuminate the exciting possibilities presented by P(III)-directed C-H activation in propelling the boundaries of organic synthesis. By highlighting our pioneering work, we hope to inspire further developments in this promising field of chemistry.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
4
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides. Angew Chem Int Ed Engl 2022; 61:e202208620. [PMID: 35877556 PMCID: PMC9825995 DOI: 10.1002/anie.202208620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of C-aryl glycosides in biologically active natural products and approved drugs has long motivated the development of efficient strategies for their selective synthesis. Cross-couplings have been frequently used, but largely relied on palladium catalyst with prefunctionalized substrates, while ruthenium-catalyzed C-aryl glycoside preparation has thus far proven elusive. Herein, we disclose a versatile ruthenium(II)-catalyzed meta-C-H glycosylation to access meta-C-aryl glycosides from readily available glycosyl halide donors. The robustness of the ruthenium catalysis was reflected by mild reaction conditions, outstanding levels of anomeric selectivity and exclusive meta-site-selectivity.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Takuya Michiyuki
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| |
Collapse
|
6
|
Deng H, Bengsch M, Tchorz N, Neumann CN. Sterically Controlled Late-Stage Functionalization of Bulky Phosphines. Chemistry 2022; 28:e202202074. [PMID: 35789048 PMCID: PMC9544633 DOI: 10.1002/chem.202202074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Abstract
The fine-tuning of metal-phosphine-catalyzed reactions relies largely on accessing ever more precisely tuned phosphine ligands by de-novo synthesis. Late-stage C-H functionalization and diversification of commercial phosphines offers rapid access to entire libraries of derivatives based on privileged scaffolds. But existing routes, relying on phosphorus-directed transformations, only yield functionalization of Csp 2 -H bonds in a specific position relative to phosphorus. In contrast to phosphorus-directed strategies, herein we disclose an orthogonal functionalization strategy capable of introducing a range of substituents into previously inaccessible positions on arylphosphines. The strongly coordinating phosphine group acts solely as a bystander in the sterically controlled borylation of bulky phosphines, and the resulting borylated phosphines serve as the supporting ligands for palladium during diversification through phosphine self-assisted Suzuki-Miyaura reactions.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Marco Bengsch
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nico Tchorz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Constanze N. Neumann
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
7
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C–H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta‐C‐Aryl Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Wu
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | | | - Julia Pöhlmann
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Takuya Michiyuki
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Binbin Yuan
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
8
|
Fu Y, Chen CH, Huang MG, Tao JY, Peng X, Xu HB, Liu YJ, Zeng MH. Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yueliuting Fu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Cui-Hong Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Mao-Gui Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jun-Yang Tao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xu Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hai-Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
Xu WQ, Tao JY, Liu YJ, Zeng MH. Ruthenium-catalyzed meta-difluoromethylation of arene phosphines enabled by 1,3-dione. Org Chem Front 2022. [DOI: 10.1039/d2qo00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, meta-selective difluoromethylation of arene phosphines has been developed with ruthenium catalysis using 1,3-dione as an effective ligand.
Collapse
Affiliation(s)
- Wen-Qian Xu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jun-Yang Tao
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
10
|
Ma WT, Huang MG, Fuyue L, Wang ZH, Tao JY, Li JW, Liu YJ, Zeng MH. Ru(II)-catalyzed P(III)-assisted C8-alkylation of naphthphosphines. Chem Commun (Camb) 2022; 58:7152-7155. [DOI: 10.1039/d2cc02161g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a phosphine-directed ruthenium-catalyzed C8-selective alkylation of naphthalenes with alkenes. This protocol provides a straightforward access to a large library of electron-rich C8-alkyl substituent 1-naphthphosphines, which outperformed commonly commercial...
Collapse
|
11
|
Huang MG, Shi S, Li M, Liu YJ, Zeng MH. Salicylaldehyde-Promoted Cobalt-Catalyzed C-H/N-H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Org Lett 2021; 23:7094-7099. [PMID: 34449224 DOI: 10.1021/acs.orglett.1c02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A cobalt-catalyzed annulation of the C(sp2)-H/N-H bond of indoloamides with alkynes assisted by 8-aminoquinoline is reported for the synthesis of six-membered indololactams. The use of salicylaldehyde as the ligand is crucial for this transformation. The protocol has a broad scope for both alkynes and indoles. Preparing an active Co complex illustrates that salicylaldehyde plays a key role in the C-H activation step. The synthetic applications are proven by the gram-scale reaction and one-step construction of the multicyclic 5-HT3 receptor antagonist.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
12
|
Li M, Tao JY, Wang LN, Li JW, Liu YJ, Zeng MH. Construction of Bulky Ligand Libraries by Ru (II)-Catalyzed P (III)-Assisted ortho-C-H Secondary Alkylation. J Org Chem 2021; 86:11915-11925. [PMID: 34423988 DOI: 10.1021/acs.joc.1c01329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of commercially available biaryl monophosphine ligands via ruthenium(II)-catalyzed P(III)-directed-catalyzed ortho C-H secondary alkylation is described. The use of highly ring-strained norbornene as a secondary alkylating reagent is the key to this transformation. A series of highly bulky ligands with a norbornyl group were obtained in excellent yields. The modified ligands with secondary alkyl group outperformed common substituted phosphines in the Suzuki-Miyaura cross-coupling reaction at a ppm mole level of Pd catalyst.
Collapse
Affiliation(s)
- Ming Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jun-Yang Tao
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Liang-Neng Wang
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia-Wei Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue-Jin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ming-Hua Zeng
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Department of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
13
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Wang L, Tang P, Li M, Li J, Liu Y, Zeng M. Double Ligands Enabled Ruthenium Catalyzed
ortho
‐C−H Arylation of Dialkyl Biarylphosphines: Straight and Economic Synthesis of Highly Steric and Electron‐Rich Aryl‐Substituted Buchwald‐Type Phosphines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liang‐Neng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Pan‐Ting Tang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
15
|
Ban YL, You L, Wang T, Wu LZ, Liu Q. Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yong-Liang Ban
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Long You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|