1
|
Liu D, Xiao F, Ebel B, Oppel IM, Patureau FW. Visible-Light-Mediated Radical α-C(sp 3)─H gem-Difluoroallylation of Amides with Trifluoromethyl Alkenes via Halogen Atom Transfer and 1,5-Hydrogen Atom Transfer. Org Lett 2025; 27:2377-2382. [PMID: 40042138 DOI: 10.1021/acs.orglett.5c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Direct gem-difluoroallylation at the α-carbonyl position is a challenging process by conventional methods. Herein we report the photocatalytic radical α-C(sp3)─H gem-difluoroallylation of amides with trifluoromethyl alkenes to access the target compounds with good yields and functional group tolerance. The mild and effective conditions allow gem-difluoroalkene motifs as carbonyl bioisosteres incorporated concisely to some complex molecules, including gemfibrozil and estrone derivatives, presenting great potential for late-stage functionalization of drugs, natural products, and bioactive intermediates. Mechanistic investigations suggest a radical pathway combining XAT and 1,5-HAT.
Collapse
|
2
|
Chen Y, Mao X, Li MM, Ding W. Visible Light Photoredox-Catalyzed Radical Defluorinative Arylation of α-Trifluoromethyl Alkenes with Aryl Chlorides. J Org Chem 2025; 90:3391-3403. [PMID: 40011037 DOI: 10.1021/acs.joc.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photocatalytic defluorinative cross-coupling reactions of α-trifluoromethyl alkenes with diverse radical precursors have emerged as a powerful strategy for the synthesis of gem-difluoroalkenes. However, the radical defluorinative arylation is relatively rare due to the limitation of aryl radical precursors. Aryl chlorides, as ideal candidates, remain a large challenge in this reaction because of the chemical inertness of the C(sp2)-Cl bond and their high negative reduction potential. Herein, we report a radical defluorinative arylation of α-trifluoromethyl alkenes with aryl chlorides as aryl radical precursors through a consecutive photoinduced electron transfer (ConPET) process. This protocol features mild conditions, operational simplicity, wide substrate scope, and functional group tolerance, producing a diverse range of benzylic gem-difluoroalkenes in moderate to good yields. The scale-up reaction and the valuable transformations of products demonstrate the great potential applications of this approach.
Collapse
Affiliation(s)
- Yumeng Chen
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Xie X, Liu HW, Zhu T, Zhang JJ, Hu MY, Chen Z. Visible-Light-Induced Synergistic W/Cr Catalyzed gem-Difluoroallylation of Unactivated Alkanes. Org Lett 2025; 27:2016-2021. [PMID: 39967465 DOI: 10.1021/acs.orglett.5c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Currently, the scope of the Nozaki-Hiyama-Kishi (NHK) reaction is limited to aldehydes and ketones to construct alcohol derivatives. Herein, we have described a visible-light-induced synergistic W/Cr(III)-catalyzed NHK-type gem-difluoroallylation reaction of unactivated cyclic and linear alkanes. The reaction merits feedstock materials, mild reaction conditions, and a wide functionality tolerance. Mechanistic studies imply the favorable reduction of CrCl3 to CrCl2 by reduced decatungstate W10O325-, thus closing the catalytic cycle.
Collapse
Affiliation(s)
- Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hua-Wei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meng-Yang Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
4
|
Feng B, Tang M, Xiao R, Wang Q, Zhu G, Zhang Z, Yuan Z, Wang Y. Photocatalytic Three-Component Reductive Coupling Synthesis of gem-Difluorohomoallyl Secondary Amines. J Org Chem 2025; 90:2118-2125. [PMID: 39846886 DOI: 10.1021/acs.joc.4c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
gem-Difluorohomoallyl amines, an important class of gem-difluoroalkenes, are prevalent moieties in many bioactive compounds. However, limited methods are suitable for the synthesis of this type of compound containing secondary amines. Here, we display a photocatalytic multicomponent protocol for the synthesis of gem-difluoroalkenes containing secondary amines, which makes use of readily available materials: arylamines, alkyl aldehydes, and α-trifluoromethyl alkenes. Moreover, ketones and secondary amines are also suitable substrates. Preliminary mechanistic experiments indicate that a key α-amino radical was involved, generated from the reduction of in situ-formed imines (or iminium ions) by a reduced photocatalyst. Subsequent addition of the α-amino radical to α-trifluoromethyl alkenes and β-F elimination deliver the desired products.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Rui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
- College of Pharmacy, Jinhua University of Vocational Technology, 888 Haitang West Road, Jinhua, Zhejiang 321017, China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
5
|
Yuan XY, Lu ZX, Huang X, Lv Q, Sun K, Chen X, Qu L, Yu B. Decatungstate-Photocatalyzed Transformations of 2-Bromo-3,3,3-trifluoropropene for Selective Synthesis of Z/ E-β-CF 3-Enones. Org Lett 2024; 26:10570-10575. [PMID: 39621940 DOI: 10.1021/acs.orglett.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Condition-controlled switchable and divergent transformations of cost-effective 2-bromo-3,3,3-trifluoropropene (BTP) and aldehydes were realized using a decatungstate (TBADT)-photocatalyzed strategy. The hydroacylated products, i.e., β,β-Br,CF3-ketones, can be applied as highly functionalized synthetic building blocks for the selective synthesis of (Z/E)-β-CF3-enones. Utilizing this methodology, a broad range of commercially available aromatic and aliphatic aldehydes as well as numerous complex aldehydes, such as lily aldehyde, cyclamen aldehyde, citronellal, vanillin, and aldehydes containing bioactive moieties, including ibuprofen, gemfibrozil, naproxen, flurbiprofen, oleic acid, and aspirin, may be proficiently employed in this transformative process.
Collapse
Affiliation(s)
- Xiao-Ya Yuan
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zi-Xuan Lu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xianqiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qiyan Lv
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Sun
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaolan Chen
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lingbo Qu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bing Yu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Martínez-Balart P, Velasco-Rubio Á, Barbeira-Arán S, Jiménez-Cristóbal H, Fañanás-Mastral M. Chemodivergent alkylation of trifluoromethyl alkenes via photocatalytic coupling with alkanes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:11196-11205. [PMID: 39398964 PMCID: PMC11465006 DOI: 10.1039/d4gc04176c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
gem-Difluoroalkenes and trifluoromethyl alkanes are prominent structures in biologically active compounds. Radical alkylation of α-trifluoromethyl alkenes represents a useful strategy to access these structures. However, reported methods have relied on the use of pre-functionalized radical precursors and examples involving the use of simple hydrocarbons as coupling partners are elusive. Here we report a chemodivergent methodology based on the direct activation of C(sp3)-H bonds enabled by HAT photoredox catalysis. This protocol provides an efficient platform for preparing both gem-difluoroalkenes and trifluoromethyl alkanes from ubiquitous hydrocarbon feedstocks, including gaseous alkanes. Importantly, chemoselectivity is easily achieved by simple modification of reaction conditions and/or additives.
Collapse
Affiliation(s)
- Pol Martínez-Balart
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Sergio Barbeira-Arán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Hugo Jiménez-Cristóbal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
7
|
Xu J, Zhou Y, Liu B. Dicarbofunctionalization of Vinylarenes with Pyridine and Aldehydes via Photocatalytic Hydrogen Atom Transfer. J Org Chem 2024; 89:15877-15883. [PMID: 39397537 DOI: 10.1021/acs.joc.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We describe a metal-free and mild three-component reaction utilizing vinylarenes, alkyl aldehydes, and 4-cyanopyridine. In this reaction, the scope of vinylarenes and alkyl aldehydes includes over 40 examples, generating a variety of β-pyridinyl ketones. Moreover, potential applications of this method have been demonstrated by the functionalization of pharmaceutical molecules. An acyl radical is proposed to be produced via a polarity-matched hydrogen atom transfer between alkyl aldehydes and a triplet-state diradical from benzophenone.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yiting Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
8
|
Ai C, Wang T, Bao Y, Yan S, Zhang Y, Wang JY. Assembly of functionalized gem-difluoroalkenes via photocatalytic defluorocyanoalkylation and defluoroacylation of α-CF 3 styrenes with oxime esters. Org Biomol Chem 2024. [PMID: 39469837 DOI: 10.1039/d4ob01496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report an efficient photocatalytic protocol for the defluorocyanoalkylation and defluoroacylation of α-trifluoromethyl styrenes by utilizing oxime esters as radical donors, allowing for the preparation of diverse gem-difluoroalkenes. The treatment of α-trifluoromethyl styrenes with cyclobutanone oxime esters led to the formation of distal cyano group-anchored gem-difluoroalkenes. Notably, adding K2CO3 as an inorganic base to the photocatalytic system afforded γ,γ-difluoroallylic ketones by utilizing acyl oxime esters as the acylating agents. Preliminary mechanistic investigations into this reaction pathway revealed the involvement of single-electron reduction, C-C bond cleavage initiated by iminyl radicals, radical addition, and β-fluoride elimination steps.
Collapse
Affiliation(s)
- Chan Ai
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tao Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yu Bao
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yue Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
9
|
Dong K, Wu T, Wang M, Lin L. Spirobipyridine Ligand Enabled Iridium-Catalyzed Site-Selective C-H Activation via Non-Covalent Interactions. Angew Chem Int Ed Engl 2024; 63:e202411158. [PMID: 39008194 DOI: 10.1002/anie.202411158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
The selective borylation of specific C-H bonds in organic synthesis remains a formidable challenge. In this study, we present a novel spirobipyridine ligand that features a binaphthyl backbone. This ligand facilitates the iridium-catalyzed selective C-H borylation of benzene derivatives. The ligand is designed with "side-arm-wall" substituents that allow vicinal di- or multi-substituted benzene derivatives to approach metal center and effectively block other reactive sites by non-covalent interactions with substrates. The effectiveness of this strategy is demonstrated by the successful selective distal C-H activation of various alkaloids and its broad compatibility with functional groups.
Collapse
Affiliation(s)
- Kun Dong
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Tianbao Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luqing Lin
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
10
|
Dong L, Wang X, Gou Y, Yu S, Yu Z. Photoredox/HAT-Catalyzed Intramolecular Hydrocyclization of Alkenes toward 2,3-Fused Quinazolinones and Dihydroquinazolinones. Org Lett 2024; 26:8756-8761. [PMID: 39356628 DOI: 10.1021/acs.orglett.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
New photochemical approaches to 2,3-fused quinazolinones and dihydroquinazolinones are disclosed. The intramolecular hydrocyclization proceeds in moderate to excellent yields across diverse alkenes with high regioselectivity and diastereocontrol. Mechanistic studies indicated that the radical cascade processes involve thiophenol acting as single-electron transfer and hydrogen atom transfer reagents. The success of the gram-scale synthesis proves the strategy can be used for practical applications.
Collapse
Affiliation(s)
- Li Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Xiaoqing Wang
- College of Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Yanhui Gou
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Shuo Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
11
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
12
|
Semeniuk T, Dudas T, Okeh E, Felesky T, Hamel JD. Photocatalytic Defluorinative α-Aminoalkylation of Allylic Difluorides. J Org Chem 2024; 89:13669-13677. [PMID: 39232656 DOI: 10.1021/acs.joc.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A photocatalytic process was devised to synthesize monofluoroalkenes via defluorinative functionalization of allylic difluorides. N-Alkylanilines are used as precursors to α-aminoalkyl radicals, which undergo regioselective addition to allylic difluorides, and subsequent SET and fluoride elimination produce monofluoroalkenes. C-C bond formation on the aniline is site-selective for the least substituted carbon α to nitrogen.
Collapse
Affiliation(s)
- Taylor Semeniuk
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Ty Dudas
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Esther Okeh
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Tanner Felesky
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jean-Denys Hamel
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
13
|
Yang P, Yu H, Zhai R, Zhou JS, Tang B. Nickel-catalyzed hydrodefluorination/deuterodefluorination of CF 3-alkenes with formic acid. Chem Commun (Camb) 2024; 60:6548-6551. [PMID: 38842110 DOI: 10.1039/d4cc00918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The synthesis of deuterated gem-difluoroalkenes via selective deuterodefluorination of β-CF3-cinnamates using a nickel catalyst has been reported for the first time. Commercially available deuterated formic acid is a cheap and convenient deuterium source. The nickel-catalyst showed high selectivity for monodefluorination and avoided competitive reactions such as multiple defluorination or hydrogenation.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Haiping Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Runze Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
14
|
Zeng L, Ren HZ, Lv GF, Ouyang XH, He DL, Li JH. Electroreductive Remote Benzylic C(sp 3)-H Arylation of Aliphatic Ethers Using Cyanoarenes for the Synthesis of α-(Hetero)aryl Ethers. Org Lett 2024. [PMID: 38502576 DOI: 10.1021/acs.orglett.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
An iodoarene-driven electroreductive remote C(sp3)-H arylation of unsymmetrical 1-(o-iodoaryl)alkyl ethers with cyanoarenes for the site selective synthesis of α-(hetero)aryl ethers is developed. With the introduction of cyanoarenes as both aryl sources and electron transfer mediators, this method includes an iodoarene-driven strategy to enable the regiocontrollable formation of two new bonds, one C(sp2)-H bond, and one C(sp2)-C(sp3) bond, in a single reaction step through the sequence of halogen atom transfer (XAT), hydrogen atom transfer (HAT), radical-radical coupling, and decyanation.
Collapse
Affiliation(s)
- Liang Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Hua-Zhan Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
16
|
Shi Y, Nie J, Wu Z, Ji X, Huang H. Photoredox Enabled Defluorinative Benzylation of Trifluoromethyl Alkenes with Alkylarenes. Org Lett 2024; 26:100-105. [PMID: 38147046 DOI: 10.1021/acs.orglett.3c03713] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Herein, we report a photoredox enabled defluorinative benzylation of trifluoromethyl alkenes with readily available alkylarenes, which provides convenient access to a series of structurally valuable benzylated gem-difluoroalkenes under mild reaction conditions. The synthetic value of this protocol has been demonstrated by the transformations of several substrates bearing drug moieties, gram-scale reactions, and various further derivatizations of the gem-difluoroalkene products. The preliminary mechanistic investigations suggest a reaction pathway with rate-determining benzyl C-H bond cleavage of toluene followed by benzylic radical formation.
Collapse
Affiliation(s)
- Yutao Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jinhuan Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhijie Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
17
|
Wei X, Zhang Y, Zhang JJ, Fang W, Chen Z. Solvent-Controllable C-F Bond Activation for Masked Formylation of α-Trifluoromethyl Alkenes via Organo-Photoredox Catalysis. J Org Chem 2024; 89:624-632. [PMID: 38115588 DOI: 10.1021/acs.joc.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
18
|
He SL, Bao YS, Hu J, Bai C, Liu D. Selective and controllable amination and defluoroamidation of α-trifluoromethylstyrene. Org Biomol Chem 2023; 21:8658-8662. [PMID: 37878244 DOI: 10.1039/d3ob01595e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We present a blueprint for the amination and defluoroamidation of α-trifluoromethylstyrene. This practical protocol presents a general method for the diversity-oriented synthesis of vicinal trifluoromethyl amines and gem-difluoro alkenes from α-trifluoromethylstyrene maintaining excellent chemoselectivity. The synthetic strategy features outstanding atom economy and wide functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Shuang-Lian He
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Juan Hu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
19
|
Wang R, Wang CY, Liu P, Bian KJ, Yang C, Wu BB, Wang XS. Enantioselective catalytic radical decarbonylative azidation and cyanation of aldehydes. SCIENCE ADVANCES 2023; 9:eadh5195. [PMID: 37656788 PMCID: PMC10854440 DOI: 10.1126/sciadv.adh5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Empowered by the ubiquity of carbonyl functional groups in organic compounds, decarbonylative functionalization was prevalent in the construction of complex molecules. Under this context, asymmetric decarbonylative functionalization has emerged as an efficient pathway to accessing chiral motifs. However, ablation of enantiomeric control in a conventional 2e transition metal-catalyzed process was notable because of harsh conditions (high temperatures, etc.) that are usually required. To address this challenge and use readily accessible aldehyde directly, we report the asymmetric radical decarbonylative azidation and cyanation. Diverse aldehydes were directly used as alkyl radical precursor, engaging in the subsequent inner-sphere or outer-sphere ligand transfer where functional motifs (CN and N3) could be incorporated in excellent site- and enantioselectivity. Mild conditions, broad scope, excellent regioselectivity (driven by polarity-matching strategy), and enantioselectivity were shown for both transformations. This radical decarbonylative strategy using aldehydes as alkyl radical precursor has offered a powerful reaction manifold in asymmetric radical transformations to construct functional motifs regio- and stereoselectively.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Cheng-Yu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Peng Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kang-Jie Bian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chi Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bing-Bing Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
20
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
21
|
Tian J, Zhou L. Photoredox radical/polar crossover enables C-H gem-difunctionalization of 1,3-benzodioxoles for the synthesis of monofluorocyclohexenes. Chem Sci 2023; 14:6045-6051. [PMID: 37293655 PMCID: PMC10246682 DOI: 10.1039/d3sc00912b] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
A photocatalytic C-H gem-difunctionalization of 1,3-benzodioxoles with two different alkenes for the synthesis of highly functionalized monofluorocyclohexenes is described. Using 4CzIPN as the photocatalyst, the direct single electron oxidation of 1,3-benzodioxoles allows their defluorinative coupling with α-trifluoromethyl alkenes to produce gem-difluoroalkenes in a redox-neutral radical polar crossover manifold. The C-H bond of the resultant γ,γ-difluoroallylated 1,3-benzodioxoles was further functionalized via radical addition to electron-deficient alkenes using a more oxidizing iridium photocatalyst. The capture of in situ generated carbanions by an electrophilic gem-difluoromethylene carbon and consecutive β-fluoride elimination afford monofluorocyclohexenes. The synergistic combination of multiple termination pathways of carbanions enables rapid incorporation of molecular complexity via stitching simple and readily accessible starting materials together.
Collapse
Affiliation(s)
- Jiabao Tian
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| |
Collapse
|
22
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
24
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
25
|
Chen L, Wang J, Lin C, Zhu Y, Du D. CF 2Br 2 as a Source for Difluoroolefination of 1,3-Enynes via N-Heterocyclic Carbene Catalysis. Org Lett 2022; 24:7047-7051. [PMID: 36121666 DOI: 10.1021/acs.orglett.2c03007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Commercially available CF2Br2 has been used as a convenient source for the rapid and reliable incorporation of the gem-difluorovinyl motif into an allene framework via an N-heterocyclic carbene catalyzed difluoroolefination of 1,3-enynes. The reaction proceeds through a cascade three-component radical relay/elimination process. This protocol is distinguished by its mild conditions, readily accessible starting materials, wide substrate scope, and ease of late-stage functionalization, thus unlocking an untraditional strategy to construct a new class of functionalized gem-difluorovinyl allenes.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Jingyi Wang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Chen Lin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yiwei Zhu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
26
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
27
|
Wang B, Wang CT, Li XS, Liu XY, Liang YM. Visible-Light-Induced C-F and C-N Bond Cleavage for the Synthesis of gem-Difluoroalkenes. Org Lett 2022; 24:6566-6570. [PMID: 36053062 DOI: 10.1021/acs.orglett.2c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe a novel and efficient photoredox catalytic radical addition/defluoroalkylation coupling reaction between primary amines and trifluoromethyl-substituted alkenes. A series of gem-difluoroalkenes were synthesized via C-N bond cleavage of α-3°, α-2°, and α-1° amines under visible light irradiation. This reaction is characterized by a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Mu Y, Jiang R, Hong Y, Hou J, Yang Z, Tang D. Acid-catalyzed synthesis of pyrazolo[4,3-c]quinolines from (1H-pyrazol-5-yl)anilines and ethers via the cleavage of C–O bond. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Zeng W, Li L, Wang C, Wang D, Zhou L. Synthesis of 3‐Amino‐1‐(difluoromethylidene)‐tetralins via Relay Photocatalytic Cascade Reactions of Arylalanines and 2‐Bromo‐3,3,3‐trifluoropropene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Yang C, Chen J, Li X, Yang X, Zhu Y, Wu S, Zeng G, Wang K, Fan B. Photocatalyzed
gem
‐Difluoroallylation of Tertiary Amines with α‐Trifluoromethyl Alkenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Xinhan Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Xiaoju Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province China
| | - Guangzhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Kaimin Wang
- School of Chemistry and Environment Yunnan Minzu University Yunnan Kunming 650500 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Yunnan Kunming 650500 China
| |
Collapse
|
31
|
Chen B, Yu K, Wu XF. Visible-light-induced defluorinative carbonylative coupling of alkyl iodides with α-trifluoromethyl substituted styrenes. Org Biomol Chem 2022; 20:5264-5269. [PMID: 35723274 DOI: 10.1039/d2ob00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-mediated defluorinative carbonylative cross-coupling of alkyl iodides with α-trifluoromethyl styrenes has been developed. The reaction occurs at room temperature under blue light irradiation, and various gem-difluoroalkenes were obtained in moderate to good yields. Synthetic transformations of the obtained product were performed as well.
Collapse
Affiliation(s)
- Bo Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.
| | - Kai Yu
- Shenyang Gold Jyouki Technology Co., Ltd, 110023 Fushun, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China. .,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| |
Collapse
|
32
|
Luo C, Zhou Y, Chen H, Wang T, Zhang ZB, Han P, Jing LH. Photoredox Metal-Free Allylic Defluorinative Silylation of α-Trifluoromethylstyrenes with Hydrosilanes. Org Lett 2022; 24:4286-4291. [PMID: 35674520 DOI: 10.1021/acs.orglett.2c01690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report an efficient strategy that combines organic photoredox and hydrogen atom transfer to deliver gem-difluoroallylsilanes via defluorinative silylation of α-trifluoromethylstyrenes using hydrosilanes as silicon sources. This protocol provides an environmentally friendly approach for the preparation of structurally diverse gem-difluoroallylsilanes with excellent functional group compatibility and renders it suitable for late-stage modification of bioactive and complex molecules.
Collapse
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hang Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
33
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
34
|
Kim H, Jung Y, Cho SH. Defluorinative C-C Bond-Forming Reaction of Trifluoromethyl Alkenes with gem-(Diborylalkyl)lithiums. Org Lett 2022; 24:2705-2710. [PMID: 35380841 DOI: 10.1021/acs.orglett.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition-metal-free defluorinative C-C bond-forming reaction of trifluoromethyl alkenes with gem-(diborylalkyl)lithiums. This synthetic strategy provides access to a variety of 4,4-difluoro homoallylic diboronate esters, which serve as versatile intermediates in the efficient preparation of valuable gem-difluoroalkene derivatives. Further synthetic modifications are conducted to demonstrate the synthetic utility of the obtained 4,4-difluoro homoallylic diboronate esters.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
35
|
Sun Z, Zhou L. Synthesis of 5-Fluoro-dihydroindolizines from Pyrrole-2-acetic Acids and Trifluoromethyl Alkenes via Dual C-F Bond Cleavage in a CF 3 Group. J Org Chem 2022; 87:4801-4812. [PMID: 35297252 DOI: 10.1021/acs.joc.2c00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the synthesis of 5-fluoro-dihydroindolizines via dual C-F bond cleavage in a trifluoromethyl group. The photocatalytic defluorinative coupling of pyrrole-2-acetic acids and α-trifluoromethyl alkenes cleaved the first C-F bond, providing gem-difluoroalkenes bearing an unprotected pyrrole motif. Subsequently, an intramolecular SNV reaction closed the ring by forming a C-N bond concomitantly with the cleavage of the second C-F bond. Using indole-2-acetic acids as the substrates, the reactions also allow the assembly of 6-fluoro-dihydropyrido[1,2-a]indoles.
Collapse
Affiliation(s)
- Zhengchang Sun
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
36
|
|
37
|
Barham JP, Kaur J. Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1677-6619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractAmines and amides, as N-containing compounds, are ubiquitous in pharmaceutically-active scaffolds, natural products, agrochemicals, and peptides. Amides in nature bear a key responsibility for imparting three-dimensional structure, such as in proteins. Structural modifications to amines and amides, especially at their positions α to N, bring about profound changes in biological activity oftentimes leading to more desirable pharmacological profiles of small drug molecules. A number of recent developments in synthetic methodology for the functionalizations of amines and amides omit the need of their directing groups or pre-functionalizations, achieving direct activation of the otherwise relatively benign C(sp3)–H bonds α to N. Among these, hydrogen atom transfer (HAT) has proven a very powerful platform for the selective activation of amines and amides to their α-amino and α-amido radicals, which can then be employed to furnish C–C and C–X (X = heteroatom) bonds. The abilities to both form these radicals and control their reactivity in a site-selective manner is of utmost importance for such chemistries to witness applications in late-stage functionalization. Therefore, this review captures contemporary HAT strategies to realize chemo- and regioselective amine and amide α-C(sp3)–H functionalization, based on bond strengths, bond polarities, reversible HAT equilibria, traceless electrostatic-directing auxiliaries, and steric effects of in situ-generated HAT agents.1 Introduction2 Functionalizations of Amines3 Functionalizations of Carbamates4 Functionalizations of Amides5 Conclusion
Collapse
|
38
|
Xiao J, Montgomery J. Nickel-Catalyzed Defluorinative Coupling of Aliphatic Aldehydes with Trifluoromethyl Alkenes. ACS Catal 2022; 12:2463-2471. [PMID: 35992737 PMCID: PMC9390876 DOI: 10.1021/acscatal.1c05801] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple procedure is reported for the nickel-catalyzed defluorinative alkylation of unactivated aliphatic aldehydes. The process involves the catalytic reductive union of trifluoromethyl alkenes with aldehydes using a nickel complex of a 6,6'-disubstituted bipyridine ligand with zinc metal as the terminal reductant. The protocol is distinguished by its broad substrate scope, mild conditions, and simple catalytic setup. Reaction outcomes are consistent with the intermediacy of an α-silyloxy(alkyl)nickel intermediate generated by a low-valent nickel catalyst, silyl electrophile, and the aldehyde substrate. Mechanistic findings with cyclopropanecarboxaldehyde provide insights into nature of the reactive intermediates and illustrate fundamental reactivity differences that are governed by subtle changes in ligand and substrate structure.
Collapse
Affiliation(s)
| | - John Montgomery
- Corresponding authors: John Montgomery - Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109-1055, USA,
| |
Collapse
|
39
|
Li S, Shu W. Recent advances in radical enabled selective C sp3-F bond activation of multifluorinated compounds. Chem Commun (Camb) 2022; 58:1066-1077. [PMID: 34981805 DOI: 10.1039/d1cc06446k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorine-containing molecules have found broad applications in pharmaceutical and agrochemical industries as introducing fluorine into a molecule could significantly tune the biological activities of parent molecules. Thus, the synthesis of fluorine-containing molecules has received substantial attention over the past few decades. As a complementary strategy for the synthesis of fluorinated compounds through new Csp3-F bonds formation, selective cleavage of inert Csp3-F bonds from easily-available and cost-effective multifluorinated molecules, such as fluoroalkylaromatics, α-trifluoromethyl alkenes and α-multifluorinated carbonyl compounds, has been emerging as an attractive alternative to access fluorine-containing molecules. Moreover, the inherent nature of radical reactions offers the opportunity for the selective Csp3-F functionalizations to occur under mild conditions. In this regard, the development of photoredox catalysis, transition-metal catalysis, or electrochemistry to enable radical species generation via selective Csp3-F cleavage has gained broad attention and substantial progress has been made over recent years. This highlight summerizes the recent advances in the single-electron-transfer enabled selective functionalizations of Csp3-F bonds in multifluorinated compounds via radical pathways.
Collapse
Affiliation(s)
- Sifan Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China.
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China.
| |
Collapse
|
40
|
Yan S, Yu W, Zhang J, Fan H, Lu Z, Zhang Z, Wang T. Access to gem-Difluoroalkenes via Organic Photoredox-Catalyzed gem-Difluoroallylation of Alkyl Iodides. J Org Chem 2022; 87:1574-1584. [PMID: 34964644 DOI: 10.1021/acs.joc.1c02659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organic photoredox-catalyzed gem-difluoroallylation of α-trifluoromethyl alkenes with alkyl iodides via C-F bond cleavage for the synthesis of gem-difluoroalkene derivatives is reported. This transition-metal-free transformation utilized a readily available organic dye 4CzIPN as the sole photocatalyst and employed a common chemical N,N,N',N'-tetramethylethylenediamine as the radical activator of alkyl iodides via halogen-atom transfer. In addition, a variety of iodides, including primary, secondary, and tertiary alkyl iodides, were tolerated and provided good to high yields.
Collapse
Affiliation(s)
- Songlin Yan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Jianye Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Hongmei Fan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhifeng Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| |
Collapse
|
41
|
Xiong B, Li Y, Zhang J, Liu J, Zhang X, Lian Z. Cross‐Electrophile Coupling between Aryl/Vinyl Triflates and Vinyl Tosylates for the Synthesis of gem‐Difluoroalkenes via Ni/Pd Cooperative Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yue Li
- Sichuan University West China Hospital CHINA
| | - Jinyu Zhang
- Sichuan University West China Hospital CHINA
| | | | | | - Zhong Lian
- Sichuan University West China Hospital CHINA
| |
Collapse
|
42
|
Chang Z, Wang J, Lu X, Fu Y. Synthesis of gem-Difluoroalkenes through Nickel-Promoted Electrochemical Reductive Cross-Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Xu W, Xia C, Shao Q, Zhang Q, Liu M, Zhang H, Wu M. Visible-light-induced transition-metal-free defluorosilylation of α-trifluoromethylalkenes via hydrogen atom transfer of silanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and feasible synthetic protocol for silyl gem-difluoroalkenes was developed using α-trifluoromethylalkenes and silanes via the synergistic combination of photoredox and hydrogen-atom transfer catalysis under visible light irradiation.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Congjian Xia
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Qi Shao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Mingrui Liu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Hongwei Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| |
Collapse
|
44
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
45
|
Lu XY, Chen XK, Gao MT, Sun XM, Jiang RC, Wang JC, Yu LJ, Ge MY, Wei ZH, Liu Z. Copper-catalyzed direct monofluoroalkenylation of C(sp 3)–H bonds via decarboxylation of α-fluoroacrylic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00977c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a protocol for the copper-catalyzed direct monofluoroalkenylation of C(sp3)–H bonds is reported.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
- School of Chemistry and Chemical Engineering, AnHui University, He Fei, 230601, China
| | - Xing-Ke Chen
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Meng-Ting Gao
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Xiao-Mei Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Run-Chuang Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Jun-Chao Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Li-Juan Yu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Meng-Yuan Ge
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Zheng-Huan Wei
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Zi Liu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| |
Collapse
|
46
|
Zhao F, Zhou W, Zuo Z. Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Wenlong Zhou
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Zuo Zuo
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| |
Collapse
|
47
|
Zhou L. Recent Advances in C-F Bond Cleavage Enabled by Visible Light Photoredox Catalysis. Molecules 2021; 26:molecules26227051. [PMID: 34834143 PMCID: PMC8621615 DOI: 10.3390/molecules26227051] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/05/2022] Open
Abstract
The creation of new bonds via C-F bond cleavage of readily available per- or oligofluorinated compounds has received growing interest. Using such a strategy, a myriad of valuable partially fluorinated products can be prepared, which otherwise are difficult to make by the conventional C-F bond formation methods. Visible light photoredox catalysis has been proven as an important and powerful tool for defluorinative reactions due to its mild, easy to handle, and environmentally benign characteristics. Compared to the classical C-F activation that proceeds via two-electron processes, radicals are the key intermediates using visible light photoredox catalysis, providing new modes for the cleavage of C-F bonds. In this review, a summary of the visible light-promoted C-F bond cleavage since 2018 was presented. The contents were classified by the fluorosubstrates, including polyfluorinated arenes, gem-difluoroalkenes, trifluoromethyl arenes, and trifluoromethyl alkenes. An emphasis is placed on the discussion of the mechanisms and limitations of these reactions. Finally, my personal perspective on the future development of this rapidly emerging field was provided.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
48
|
Shi J, Guo LY, Hu QP, Liu YT, Li Q, Pan F. Photoredox-Catalyzed Difunctionalization of Unactivated Olefins for Synthesizing Lactam-Substituted gem-Difluoroalkenes. Org Lett 2021; 23:8822-8827. [PMID: 34723553 DOI: 10.1021/acs.orglett.1c03329] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the synthesis of lactam-substituted gem-difluoroalkenes has been developed through a photoredox-catalyzed radical cascade reaction. This developed photoredox-catalyzed, Brønsted base-assisted intramolecular 5-exo-trig cyclization/intermolecular radical addition/β-fluoride elimination reaction offers a simple method for producing lactam, carbamate, or urea-substituted gem-difluoroalkenes with good functional group tolerance and high yields.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Li-Yun Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
49
|
Claraz A, Allain C, Masson G. Electroreductive Cross-Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of Gem-Difluoroalkenes. Chemistry 2021; 28:e202103337. [PMID: 34761845 DOI: 10.1002/chem.202103337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Abstract
An electroreductive access to gem-difluoroalkenes has been developed through the decarboxylative/defluorinative coupling of N-hydroxyphtalimides esters and α-trifluoromethyl alkenes. The electrolysis is performed under very simple reaction conditions in an undivided cell using cheap carbon graphite electrodes. This metal-free transformation features broad scope with good to excellent yields. Tertiary, secondary as well as primary alkyl radicals could be easily introduced. α-aminoacids L-aspartic and L-glutamic acid-derived redox active esters were good reactive partners furnishing potentially relevant gem-difluoroalkenes. In addition, it has been demonstrated that our electrosynthetic approach toward the synthesis of gem-difluoroalkenes could use an easily prepared Kratitsky salt as alkyl radical precursor via a deaminative/defluorinative carbofunctionalization of trifluoromethylstyrene.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
50
|
Wang L, Xu T, Rao Q, Zhang TS, Hao WJ, Tu SJ, Jiang B. Photocatalytic Biheterocyclization of 1,7-Diynes for Accessing Skeletally Diverse Tricyclic 2-Pyranones. Org Lett 2021; 23:7845-7850. [PMID: 34581592 DOI: 10.1021/acs.orglett.1c02865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new and green route to skeletally diverse oxo-heterocyclic architectures such as pyrano[3,4-c]chromen-2-ones and pyrano[3,4-c]quinolin-2-ones is reported via an unprecedented photocatalytic Kharasch-type cyclization/1,5-(SN″)-substitution/elimination/6π-electrocyclization/double nucleophilic substitution cascade starting from easily available heteroatom-linked 1,7-diynes and low-cost CBrCl3. During this reaction process, the full scission of carbon-halogen bonds of BrCCl3 was realized to directly build two new rings, including a lactone scaffold, using H2O as the oxygen source of the ester group.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qian Rao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|