1
|
Yang Y, Huang X, Jin Y. Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances. Chem Commun (Camb) 2025; 61:1944-1961. [PMID: 39760393 DOI: 10.1039/d4cc06099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Xinxiang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
2
|
Sun Y, Pan Y, Chen X, Yu H, Han Y, Sun Q, Hou H, Zhu S. Visible-Light Photoredox-Catalyzed Radical-Polar Crossover 1,4-Hydrofluoromethylation of 1,3-Enynes. Org Lett 2024; 26:10399-10403. [PMID: 39565637 DOI: 10.1021/acs.orglett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We report herein a visible-light photoredox-catalyzed 1,4-hydrofluoromethylation of terminal-alkene-derived 1,3-enynes with sodium fluoromethylsulfinate, providing an effective protocol to access a diversity of di- and trisubstituted allenes under mild conditions. The synthetic utility of the present protocol was demonstrated by a large-scale reaction as well as the synthetic derivatization of the allene product.
Collapse
Affiliation(s)
- Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Xu C, Zhao J, Zheng Y, Cai W, Wang C. Synthesis of P-Stereogenic Phosphinamides via Nickel-Catalyzed Kinetic Resolution of H-Phosphinamides by Alkenylation and Arylation. Org Lett 2024; 26:8662-8667. [PMID: 39365154 DOI: 10.1021/acs.orglett.4c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A nickel-catalyzed enantioselective cross-coupling for the synthesis of P-stereogenic phosphinamides has been developed. The asymmetric alkenylation and arylation of racemic H-phosphinamides using alkenyl and aryl bromides resulted in the formation of P-stereogenic N-phosphinyl compounds with good yields and high enantioselectivities. This method tolerates a variety of functional groups, and its applications are explored through scale-up reactions and product transformations.
Collapse
Affiliation(s)
- Cheng Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Zhao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Qiu YF, Wang Q, Cao JH, Xue DQ, Li M, Quan ZJ, Wang XC, Liang YM. Selective Synthesis of Mono- and Bis-Phosphorylated (Dihydro)pyrans via TMSCl-Mediated Cascade Phosphorylation Cycloisomerization of Enynones. Org Lett 2024; 26:8636-8642. [PMID: 39326000 DOI: 10.1021/acs.orglett.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2H-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Qian Xue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Zhu S, Jia L, Cheng Q, Sun Q, Chen X, Yu H, Han Y, Hou H. Visible-Light-Induced Stereoselective Radical trans-Iodoalkylation of Terminal Alkyne with Iodoform. Org Lett 2024; 26:8400-8404. [PMID: 39321069 DOI: 10.1021/acs.orglett.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We describe herein a novel stereoselective trans-iodoalkylation protocol by using three components of nucleophilic dicarbonyl compounds, iodoform and terminal alkynes. The generation of tertiary carbon radical species under mild reaction conditions allows this radical addition and stereoselective iodine atom transfer sequence with terminal alkyne to access highly synthetic applicable disubstituted vinyl iodide. The synthetic application of the present three-component photochemical protocol was demonstrated by the gram-scale reaction and product derivatization.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lizi Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Hou H, Guo S, Shen X, Chen C, Chen X, Yu H, Han Y, Sun Q, Zhu S. Site-Specific Radical Alkylation of Aryl Cyanide: Visible-Light, Photoredox-Catalyzed, Three-Component Arylalkylation of [1.1.1]Propellane. Org Lett 2024; 26:7769-7773. [PMID: 39230003 DOI: 10.1021/acs.orglett.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report herein a three-component radical arylalkylation of [1.1.1]propellane toward the synthesis of aryl-substituted bicyclo[1.1.1]pentane derivatives. The use of electron-deficient aryl cyanide as an aryl group source not only reduces the energy barrier of the arylation of the nucleophilic alkyl radical species, but also suppresses the electrophilic Friedel-Crafts alkylation process, enabling the present site-selective arylalkylation.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chengjun Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Chi Z, Zhou Y, Liu B, Xu X, Liu X, Liang Y. Nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes to access allenes and dienes. Chem Sci 2024; 15:13271-13278. [PMID: 39183907 PMCID: PMC11339949 DOI: 10.1039/d4sc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
The radical-mediated difunctionalization of 1,3-enynes facilitates rapid access to structurally diverse allenes and dienes. Whereas, owing to the existence of multiple active sites in conjugated 1,3-enynes, regulating selectivity in difunctionalized addition via a single transition-metal-catalyzed radical tandem process remains elusive. Herein, we disclose an intriguing protocol of substrate-controlled nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes with the assistance of sulfonyl chlorides and arylboronic acids. This valuable synthetic utility respectively delivers a series of highly functionalized and synthetically challenging allenyl sulfones and dienyl sulfones from fine-tuned 1,3-enynes by one step, which provides a facile approach for complex sulfone-containing drug molecules synthesis.
Collapse
Affiliation(s)
- Zhuomin Chi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongchao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Bingbing Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaojing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xueyuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
8
|
Zhu L, Zhu PW, Hu LY, Lin SY, Wu L, Zhu J. Electrochemically Enabled Hydroxyphosphorylation of 1,3-Enynes to Access Phosphinyl-Substituted Propargyl Alcohols. J Org Chem 2024; 89:10796-10804. [PMID: 39030172 DOI: 10.1021/acs.joc.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Catalytic difunctionalization with the direct activation of (O)P-H bonds has been recently established as a potentially robust platform to generate valuable organophosphorus compounds. In terms of 1,3-enynes, despite of the various catalytic methods developed for hydrophosphorylation, the radical-mediated hetero-functionalization of two different atoms has been less explored. In this study, we disclosed an electrochemically induced hydroxyphosphorylation of 1,3-enynes for the construction of phosphinyl-substituted propargyl alcohols. The system involves the direct activation of both arylphosphine oxides and oxygen in ambient air with no external metal or additive needed. The use of electrochemistry ensures the regioselective, atom-economic and eco-friendly for the difunctionalization process. This strategy highlights the advantages of mild reaction conditions, readily available starting materials and broad substrate scope, showing its practical synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- SINOPEC Jinling Company, NanJing 210033, P. R. China
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shao-Yan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
9
|
Cao Q, Li MM, Mao X, Zhou QQ, Ding W. Visible-Light-Induced Regioselective Radical-Polar Crossover 1,4-Hydrophosphinylation of 1,3-Enynes: Access to Trisubstituted Allenes Bearing a Phosphine Oxide Group. Org Lett 2024. [PMID: 38787784 DOI: 10.1021/acs.orglett.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The radical 1,4-functionalizations of 1,3-enynes have emerged as a powerful strategy for the synthesis of multisubstituted allenes. However, the phosphorus-centered radical-initiated transformations remain largely elusive. Herein, visible-light photoredox catalytic regioselective radical hydrophosphinylation of 1,3-enynes with diaryl phosphine oxides as phosphinoyl radical precursors has been realized. This protocol features mild conditions, a wide substrate scope, and good functional group tolerance, producing a diverse range of phosphinoyl-substituted allenes in moderate to good yields with high atom economy. Detailed mechanistic experiments revealed a radical-polar crossover process in the reaction.
Collapse
Affiliation(s)
- Qingzhi Cao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Quan-Quan Zhou
- College of Chemistry and Chemical Engineering, Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
11
|
Zhang F, Liu L, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Visible-Light-Induced and Iodoform-Promoted Functionalization of Ether with Secondary Sulfonyl Amides. J Org Chem 2024; 89:687-691. [PMID: 38101330 DOI: 10.1021/acs.joc.3c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
An iodoform-promoted functionalization of ether with secondary sulfonyl amides under visible-light irradiation was developed toward synthesis of hemiaminal skeleton with good to excellent isolated yields. The characterization of the isolated ether and iodoform complex revealed regioselective hydrogen atom transfer to initiate carbon radical formation and enabled the amination reaction with the sulfonamide.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Lanqin Liu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
12
|
Zhu S, Sun Y, Pan Y, Chen X, Yu H, Han Y, Yan C, Shi Y, Hou H. Visible-Light-Mediated Radical Hydroalkylative Cyclization of 1,6-Enynes. J Org Chem 2023; 88:16639-16643. [PMID: 37976542 DOI: 10.1021/acs.joc.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A radical hydroalkylative cyclization approach accessing various alkenyl heterocyclic compounds was developed using dimethyl malonate and 1,6-enynes in the presence of visible-light photoredox catalysis. The use of Ir(dtbbpy)(ppy)2PF6 as a photosensitizer enables carbon atom radical formation and initiates the cascade cyclization reaction under mild conditions.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Guo S, Shen X, Chen X, Yu H, Han Y, Yan C, Shi Y, Hou H, Zhu S. Photoinduced Copper-Catalyzed 1,2-Difunctionalization of 1,3-Dienes with Aryl Diselenides. J Org Chem 2023; 88:15969-15974. [PMID: 37903348 DOI: 10.1021/acs.joc.3c01181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Described herein is a photoinduced copper-catalyzed 1,2-difunctionalization of 1,3-dienes. The selenium atom radical was generated by the visible light irradiation of diselenides, triggering radical addition with 1,3-dienes to form allyl radical intermediate. Subsequent rapid Z/E isomerization allowed for thermodynamically favorable intermediate formation and enabled copper catalyzed stereoselective functionalization with various nucleophiles.
Collapse
Affiliation(s)
- Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaoyu Shen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, P. R. China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, P. R. China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
14
|
Hou H, Pan Y, Sun Y, Han Y, Yan C, Shi Y, Zhu S. Visible-Light Photoredox Catalyzed Regioselective 1,4-Hydroalkylation of 1,3-Enyne. Chemistry 2023; 29:e202301633. [PMID: 37365999 DOI: 10.1002/chem.202301633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
Described herein is a visible-light photoredox-catalyzed regioselective 1,4-hydroalkylation of 1,3-enynes. Various of di- and tri-substituent allenes were really accessible under the present reaction conditions. The visible-light photoredox activation of the carbon nucleophile to generate its radical species, allowing the addition with un-activated enynes. The synthetic utility for the present protocol was demonstrated by a large-scale reaction, as well as the derivatization of the allene product.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
15
|
Qiu YF, Chen SP, Cao JH, Wang S, Li JH, Li M, Quan ZJ, Wang XC, Liang YM. Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Org Lett 2022; 24:8609-8614. [DOI: 10.1021/acs.orglett.2c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shi-Peng Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jin-Hao Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
16
|
Ni-catalyzed regiodivergent hydrophosphorylation of enynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Beukeaw D, Rattanasupaponsak N, Kittikool T, Phakdeeyothin K, Phomphrai K, Yotphan S. Metal‐Free Site‐Selective Direct Oxidative Phosphorylation of Pyrazolones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
19
|
Zhang YQ, Han XY, Wu Y, Qi PJ, Zhang Q, Zhang QW. Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. Chem Sci 2022; 13:4095-4102. [PMID: 35440997 PMCID: PMC8985578 DOI: 10.1039/d2sc00091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The catalytic asymmetric synthesis of P-stereogenic phosphines is an efficient strategy to access structurally diverse chiral phosphines that could serve as organocatalysts and ligands to transition metals and motifs of antiviral drugs. Herein, we describe a Ni catalyzed highly regio and enantioselective hydrophosphinylation reaction of secondary phosphine oxides and enynes. This method afforded a plethora of alkenyl phosphine oxides which could serve as valuable precursors to bidentate ligands. A new type of mechanism was discovered by combined kinetic studies and density functional theory (DFT) calculations, which was opposed to the widely accepted Chalk-Harrod type mechanism. Notably, the alkene moiety which could serve as a directing group by coordinating with the Ni catalyst in the transition state, plays a vital role in determining the reactivity, regio and enantioselectivity.
Collapse
Affiliation(s)
- Ya-Qian Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Xue-Yu Han
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Yue Wu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Peng-Jia Qi
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
20
|
Cheng Q, Zhang F, Chen X, Han Y, Yan C, Shi Y, Hou H, Zhu S. Visible-Light-Mediated Three-Component Radical Iodosulfonylative Cyclization of Enynes. Org Lett 2022; 24:2515-2519. [PMID: 35352951 DOI: 10.1021/acs.orglett.2c00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient three-component radical iodosulfonylative cyclization of enynes is described. The visible-light irradiation of iodoform with sulfinates enables sulfonyl radical generation under catalyst- and oxidant-free conditions and triggers the radical addition, cyclization and iodination cascade reactions, giving various vinyl iodide containing sulfones in moderate to good yields.
Collapse
Affiliation(s)
- Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fengrong Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Qiu YF, Chen SP, Cao JH, Li M, Quan ZJ, Wang XC, Liang YM. Iron(II)-Catalyzed Bisphosphorylation Cascade Cycloisomerization of γ-Hydroxyl Ynones and Diphenylphosphine Oxides: Synthesis of Highly Substituted Bisphosphorylated Dihydrofuran Derivatives. Org Lett 2022; 24:2264-2268. [PMID: 35289628 DOI: 10.1021/acs.orglett.2c00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iron(II)-catalyzed bisphosphorylation cascade cycloisomerization of readily accessible γ-hydroxyl ynones and diphenylphosphine oxides is described. This strategy provides a variety of valuable polysubstituted bisphosphorylated dihydrofuran scaffolds via the construction of two C-P bonds and one C-O bond within a single procedure. This developed reaction system demonstrates good functional group compatibilities with considerably low catalyst consumption (as low as 1%), which could be further scaled up to gram quantities in satisfactory yields.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shi-Peng Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
22
|
Zhu S, Pan Y, Sun Y, Hong X, Chen X, Han Y, Yan C, Shi Y, Hou H. Copper-Catalyzed Bromo-cyanomethylative Cyclization of Enynes. J Org Chem 2022; 87:4455-4459. [PMID: 35258964 DOI: 10.1021/acs.joc.1c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed bromo-cyanomethylative cyclization of 1,6-enynes is demonstrated. The treatment of 2-bromoacetonitrile with CuI enables the alkyl radical generation and triggers the radical addition/cyclization/bromination sequence, giving various vinyl C-Br bonds containing functionalized heterocycles in good yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Hong
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Li R, Yang CX, Niu BH, Li LJ, Ma J, Li ZL, Jiang H, Cheng WM. Visible light-induced Ni-catalyzed C–heteroatom cross-coupling of aryl halides via LMCT with DBU to access a Ni(I)/Ni(III) cycle. Org Chem Front 2022. [DOI: 10.1039/d2qo00607c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-coupling of aryl halides with nucleophiles is a synthetically attractive strategy to construct C–heteroatom bonds. Here we report a highly efficient photoinduced Ni-catalyzed method for the C–heteroatom cross-coupling of aryl...
Collapse
|
24
|
Zhang B, Ma X, Yan B, Ni C, Yu H, Yang Z, Roesky HW. An efficient catalytic method for hydrophosphination of heterocumulenes with diethylzinc as precatalyst without a solvent. Dalton Trans 2021; 50:15488-15492. [PMID: 34723295 DOI: 10.1039/d1dt02706a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercially available compound ZnEt2 acts as an efficient precatalyst for the solvent-free hydrophosphinations of heterocumulenes using Ph2PH as reagent. As far as we knew, this has been not reported in group 12 metal catalyzing reactions. A suggested mechanism of this reaction is explored, and the intermediate [{Ph2PC(NiPr)2}ZnEt]2 is obtained and characterized by a single-crystal X-ray structural analysis.
Collapse
Affiliation(s)
- Bingyi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Congjian Ni
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Hailong Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Herbert W Roesky
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Göttingen Tammannstrasse 4, D-37077, Germany.
| |
Collapse
|
25
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
26
|
Zhao D, Pan Y, Chen X, Han Y, Yan C, Shi Y, Hou H, Zhu S. Three‐Component Acylation/Peroxidation of Alkenes through Visible‐Light Photocatalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212005 China
| | - Ying Han
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Hong Hou
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
27
|
Zhu S, Cheng Q, Yang H, Chen X, Han Y, Yan C, Shi Y, Hou H. Three-Component Radical Iodonitrosylative Cyclization of 1,6-Enynes under Metal-Free Conditions. Org Lett 2021; 23:5044-5048. [PMID: 34110172 DOI: 10.1021/acs.orglett.1c01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component, metal-free radical cascade iodonitrosylative cyclization reaction was described. The nitroso radical was generated from tert-butyl nitrite and triggered the radical addition/cyclization/iodination/oxidation sequences. A variety of 1,6-enynes were tested and proved to be compatible, delivering various highly functionalized hetero- and all-carbon cycles and nitro and vinyl C-I bonds containing pyrrolidines, tetrahydrofuran, and cyclopentane in moderate to excellent isolated yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
28
|
Hou H, Zhou B, Wang J, Sun D, Yu H, Chen X, Han Y, Shi Y, Yan C, Zhu S. Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chem Commun (Camb) 2021; 57:5702-5705. [PMID: 33982720 DOI: 10.1039/d1cc01858b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein described a visible light induced nickel(II)-catalyzed cross-coupling of secondary phosphine oxides with aryl halides. The Ni(I) species and chlorine atom radical Cl˙ were generated via the ligand to metal charge transfer (LMCT) process of the NiCl2(PPh3)2, which allows nickel(IV)-phosphorus species in situ formation, giving various tertiary phosphine oxides under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Jiawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Duhao Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|