1
|
Ji J, Li K, Zhou X, Xu C, Zhang D, Shao W. Visible-light organophotoredox-catalyzed fluoroalkyl aminoxylation of unactivated and activated alkenes. Chem Commun (Camb) 2025; 61:6767-6770. [PMID: 40200841 DOI: 10.1039/d5cc00748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
An efficient method for the regioselective tetra-, tri-, di- and per-fluoroalkyl aminoxylation of unactivated and activated alkenes has been achieved with various fluorinated alkyl halides and OH-hydroxylamines. This developed photoredox-neutral protocol features versatile transformations to novel tetrafluoroethylene-containing compounds.
Collapse
Affiliation(s)
- Jianhua Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Kangjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Xiangzhu Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Chun Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Die Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
2
|
Xiao L, Wei Z, Ni C, Dilman AD, Hu J. From S-Fluoroalkylation to Fluoroalkylation-Thiolation: Difunctionalization of Alkenes with Fluoroalkyl Phenyl Sulfones and Thiophenols Enabled by Photoredox Copper Catalysis. Org Lett 2025; 27:1884-1888. [PMID: 39960021 DOI: 10.1021/acs.orglett.5c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Molecules containing fluoroalkyl and arylthio groups play a pivotal role in pharmaceutical and agrochemical development. The simultaneous introduction of these functional groups through the 1,2-difunctionalization of alkenes is an efficient strategy. Fluoroalkyl phenyl sulfones serve as accessible fluoroalkyl radical precursors; however, their tendency to interact with thiophenol via the electron donor-acceptor interaction mechanism can impede the desired transformation. Through meticulous selection of solvent and base, we successfully utilized copper catalysis to facilitate an alkene-involved three-component reaction. Our work unveils a photoredox copper-catalyzed fluoroalkylation-thiolation of alkenes using various fluoroalkyl phenyl sulfones (such as perfluoroethyl, tetrafluoroethyl, trifluoromethyl, difluoromethyl, difluoroalkyl, and difluorobenzyl). The efficacy of this approach is exemplified by the synthesis of Kengreal derivatives.
Collapse
Affiliation(s)
- Lin Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhiqiang Wei
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chuanfa Ni
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, Moscow 119991, Russia
| | - Jinbo Hu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Zhao Q, Telu S, Lu S, Pike VW. Expanding tracer space for positron emission tomography with high molar activity 18F-labeled α,α-difluoromethylalkanes. Nat Commun 2025; 16:1608. [PMID: 39948078 PMCID: PMC11825696 DOI: 10.1038/s41467-025-56897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Positron emission tomography (PET) is an advanced biomedical imaging modality that relies on well-designed radiotracers to report on specific protein targets and processes occurring in living animals and humans. Cyclotron-produced short-lived fluorine-18 (t1/2 = 109.8 min) is widely used to radiolabel tracers for PET. Herein we aim to expand the chemical space available for PET tracer development to include structures with 18F-labeled α,α-difluoromethylalkyl groups. We report an efficient and broad-scope method for labeling such groups with high molar activities based on a single-step radiofluorination of α-bromo-α-fluoroalkanes. The method is applicable to bioactive compounds and drug-like molecules, and is readily automated for radiotracer production. The unique physical and biochemical features of the α,α-difluoromethyl group can now be exploited in the design of new PET tracers.
Collapse
Affiliation(s)
- Qunchao Zhao
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| |
Collapse
|
4
|
Yang XJ, Lin JH, Xiao JC. BrCF 2CN for photocatalytic cyanodifluoromethylation. Nat Commun 2025; 16:445. [PMID: 39774954 PMCID: PMC11707358 DOI: 10.1038/s41467-024-55797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Considering the unique electronic properties of the CF2 and the CN groups, the CF2CN group has significant potential in drug and agrochemical development, as well as material sciences. However, incorporating a CF2CN group remains a considerable challenge. In this work, we disclose a use of bromodifluoroacetonitrile (BrCF2CN), a cost-effective and readily available reagent, as a radical source for cyanodifluoromethylation of alkyl alkenes, aryl alkenes, alkynes, and (hetero)arenes under photocatalytic conditions. This protocol demonstrates an exceptionally broad substrate scope and remarkable tolerance to various functional groups. Notably, the cyanodifluoromethylation of alkynes predominantly provides sterically hindered alkenes, a thermodynamically unfavorable outcome, and (hetero)arene C-H bonds are directly amenable to cyanodifluoromethylation without pre-functionalization.
Collapse
Affiliation(s)
- Xin-Jun Yang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444, Shanghai, China.
| | - Ji-Chang Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
5
|
Qian ZM, Yang ML, Guan Z, Huang CS, He YH. Photoredox-Catalyzed 1,4-Dichloromethyldimerization of Alkenes with Chloroform: Access to Polychlorinated Vicinal Diaryl Alkanes. Chemistry 2025:e202404389. [PMID: 39757122 DOI: 10.1002/chem.202404389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
A visible-light-mediated strategy is reported for the direct synthesis of polychlorinated vicinal diaryl alkanes from aryl alkenes and chloroform. In this approach, two haloalkyl radicals generated from chloroform via halogen atom transfer (XAT) and direct single electron transfer (SET) within the same photoredox catalysis cycle enable the 1,4-dichloromethyldimerization of alkenes. Besides chloroform, this strategy is applicable to carbon tetrachloride, bromotrichloromethane, and α-bromo carboxylic esters, yielding corresponding 1,4-disubstituted vicinal diaryl alkanes. Diverse polychlorinated structures containing highly congested vicinal quaternary carbon centers are effectively synthesized by this method. The potential of this reaction in late-stage drug modification is highlighted by the successful transformation of olefins with pharmaceutical structures.
Collapse
Affiliation(s)
- Zhu-Ming Qian
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Ming-Lin Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Chu-Sheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, 530001, Nanning, P. R. China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| |
Collapse
|
6
|
Mizuta S, Yamaguchi T, Iwasaki M, Ishikawa T. A facile access to aliphatic trifluoromethyl ketones via photocatalyzed cross-coupling of bromotrifluoroacetone and alkenes. Org Biomol Chem 2024; 22:8847-8856. [PMID: 39258408 DOI: 10.1039/d4ob01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biological molecules incorporating trifluoromethyl ketones (TFMKs) have emerged as reversible covalent inhibitors, aiding in the management and treatment of inflammatory diseases, cancer, and respiratory conditions. TFMKs, renowned for their versatile binding properties and adaptability, are pivotal in the rational design of novel drugs for diverse diseases. The photocatalytic insertion of alkenes, abundant feedstocks, into the α-carbon of trifluoromethylacetone represents a highly effective and atom-economical method for synthesizing valuable TFMKs. However, these processes typically necessitate high-energy photoirradiation (λ > 300 nm, Hg lamp) and stoichiometric oxidants to generate the acetonyl radical from acetone. In our study, we demonstrate the visible-light photocatalytic radical addition into olefins using bromotrifluoroacetone as the trifluoroacetonyl radical precursor under mild conditions. Aliphatic trifluoromethyl ketones or the corresponding bromo-substituted products can be obtained by selecting an appropriate photocatalyst and solvent. Comprehensive experimental investigations, including cyclic voltammetry, Stern-Volmer quenching studies, and kinetic isotope effects, corroborate the synthesis of trifluoroacetonyl radical species from bromotrifluoroacetone under photoredox conditions. Further, we demonstrate the efficient synthesis of an oseltamivir derivative bearing a trifluoromethylketone moiety, which shows promising biological activity. Hence, this methodology will streamline the direct introduction of trifluoromethyl ketone into biological target molecules during drug discovery.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
7
|
Ho TD, Lee BJ, Buchanan TL, Heikes ME, Steinert RM, Milem EG, Goralski ST, Wang YN, Lee S, Lynch VM, Rose MJ, Mitchell-Koch KR, Hull KL. Cu-Catalyzed Three-Component Alkene Carboamination: Mechanistic Insights and Rational Design to Overcome Limitations. J Am Chem Soc 2024; 146:25176-25189. [PMID: 39196314 DOI: 10.1021/jacs.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, we report mechanistic investigations into the Cu-catalyzed three-component carboamination of alkenes with α-halo carbonyls and aryl amines via an oxocarbenium intermediate. Monitoring the reaction reveals the formation of transient atom transfer radical addition (ATRA) intermediates with both electron-neutral and deficient vinyl arenes as well as unactivated alkenes. Based on our experimental studies and density functional theory calculations, the oxocarbenium is generated through atom transfer and subsequent intramolecular substitution. Further, mechanistic factors that dictate the regioselectivity of the nucleophilic attack onto the oxocarbenium to afford the γ-amino ester, γ-iminolactone, or γ-lactone are discussed. A strategy to overcome scope limitation with respect to unactivated alkenes is developed using the mechanistic insights gained herein. Finally, we demonstrate that under modified conditions, our Cu catalyst enables the ATRA reaction between a variety of alkyl halides and vinyl arenes/α-olefins, and we present a one-pot, two-step carbofunctionalization with an array of nucleophiles through ATRA/SN2.
Collapse
Affiliation(s)
- Tam D Ho
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Byung Joo Lee
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Travis L Buchanan
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Micah E Heikes
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051, United States
| | - Ryan M Steinert
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051, United States
| | - E Grace Milem
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Sean T Goralski
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Ya-Nong Wang
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - SangHyun Lee
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Vincent M Lynch
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Michael J Rose
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas, 78712, United States
| |
Collapse
|
8
|
Singh H, Tak RK, Poudel DP, Giri R. Catalytic Photoredox Carbobromination of Unactivated Alkenes with α-Bromocarbonyls via the Mechanistically Distinct Radical-Addition Radical-Pairing Pathway. ACS Catal 2024; 14:6001-6008. [PMID: 39758593 PMCID: PMC11694795 DOI: 10.1021/acscatal.4c00955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We disclose a catalytic photoredox carbobromination of unactivated alkenes with α-bromocarbonyl compounds under a blue LED light. The reaction proceeds with α-bromoesters, α-bromonitriles and α-bromo-γ-lactones along with terminal and 1,2-disubstituted internal alkenes. Reactions with indenes and 1,1-disubstituted alkenes generate alkylated alkenes. Mechanistic studies by product selectivity and three-way competitive crossover experiments suggest that the reaction operates by a radical-addition radical-pairing (RARP) mechanism. The catalytic turnover is achieved by a single electron reduction of PC•+ by Br- (or Br3 -), rather than by alkyl radical (R•), and the product is generated by the pairing of Br• (or Br2•-) and R•, instead of the combination of Br- and a carbocation (R+).
Collapse
Affiliation(s)
- Harshvardhan Singh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raj K Tak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dhruba P Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Fujie M, Mizufune K, Nishimoto Y, Yasuda M. 1-Fluoro-1-sulfonyloxylation of Alkenes by Sterically and Electronically Tuned Hypervalent Iodine: Regression Analysis toward 1,1-Heterodifunctionalization. Org Lett 2023; 25:766-770. [PMID: 36710445 DOI: 10.1021/acs.orglett.2c04235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the heterodifunctionalization of alkenes, 1,1-regioselectivity remains elusive in sharp contrast to 1,2-regioselectivity. Herein, the 1-fluoro-1-sulfonyloxylation of styrenes with Bu4NBF4 and sulfonic acids using a hypervalent iodine ArI(OAc)2 is reported. Regression analysis of substituents on ArI(OAc)2 suggested that their electron-withdrawing ability and steric factor influence the 1,1-heterodifunctionalization. We designed o-{2,4-(CF3)2C6H3}- and p-NO2-substituted ArI(OAc)2 by the regression analysis to achieve high selectivity.
Collapse
Affiliation(s)
- Masaki Fujie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Mizufune
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Spennacchio M, Colella M, Andresini M, Dibenedetto RS, Graziano E, Aramini A, Degennaro L, Luisi R. Unlocking geminal fluorohaloalkanes in nucleophilic fluoroalkylation chemistry: generation and trapping of lithiumfluorocarbenoids enabled by flow microreactors. Chem Commun (Camb) 2023; 59:1373-1376. [PMID: 36649092 DOI: 10.1039/d2cc06717j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A direct nucleophilic monofluoroalkylation strategy leveraging on lithium fluorocarbenoids has been developed. Flow microreactor technology allows capitalization of the synthetic potential of these scarcely explored short-lived intermediates - namely 1-fluoro-2-phenylethyllithium, 1-fluoro-3-phenylpropyllithium, and 1-fluorononyllithium - generated through lithium/iodine exchange reaction. This robust protocol was employed to prepare new fluorinated products, adopting various classes of electrophiles. The inherent advantages of microreactor technology contribute to rendering this approach a new valuable tool for direct fluoroalkylation chemistry.
Collapse
Affiliation(s)
- Mauro Spennacchio
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Marco Colella
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Michael Andresini
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Roberta Savina Dibenedetto
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Elena Graziano
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila, 67100, Italy
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, 70125, Italy.
| |
Collapse
|
11
|
Yue WJ, Martin R. Ni-Catalyzed Site-Selective Hydrofluoroalkylation of Terminal and Internal Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
12
|
Wu BB, Xu J, Gao Q, Bian KJ, Liu GK, Wang XS. A General and Efficient Solution to Monofluoroalkylation: Divergent Synthesis of Aliphatic Monofluorides with Modular Synthetic Scaffolds. Angew Chem Int Ed Engl 2022; 61:e202208938. [PMID: 35791279 DOI: 10.1002/anie.202208938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 12/15/2022]
Abstract
Monofluoroalkanes are important in many pharmaceuticals, agrochemicals and functional materials. However, the lack of easily available and transformable monofluoroalkylating reagents that facilitate a broad array of transformations has hampered the application of monofluoroalkylation. Herein, we report a general and efficient method of preparing diverse aliphatic monofluorides with monofluoroalkyl triflate as the synthetic scaffold. Using both nickel-catalyzed hydromonofluoroalkylation of unactivated alkenes and copper-catalyzed C-C bond formation, the general diversification of the monofluoroalkylating scaffold has been exhibited. The broad utility of this monofluoroalkylating reagent is shown by concise conversion into various conventional fluoroalkylating reagents and construction of monofluoro-alkoxy, -alkylamino motifs with commercially available heteroatom-based coupling partners.
Collapse
Affiliation(s)
- Bing-Bing Wu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jie Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qian Gao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Kang-Jie Bian
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
13
|
Dhungana RK, Granados A, Sharique M, Majhi J, Molander GA. A three-component difunctionalization of N-alkenyl amides via organophotoredox radical-polar crossover. Chem Commun (Camb) 2022; 58:9556-9559. [PMID: 35930003 PMCID: PMC10443537 DOI: 10.1039/d2cc04101d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we report a three-component organophotoredox coupling of N-alkenyl amides with α-bromocarbonyls and various nucleophiles. This transition metal-free difunctionalization protocol installs sequential C-C and C-Y (Y = S/O/N) bonds in alkenes. This reaction works with terminal and internal alkenes containing both cyclic and acyclic amides via radical-polar crossover.
Collapse
Affiliation(s)
- Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| |
Collapse
|
14
|
Gong H, Wang J, Peng Y, Chen H, Deng H, Hao J, Wan W. Photocatalyzed difluoroalkylation of pyridine N-oxides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Juan Wang
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, Shanghai, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Granados A, Dhungana RK, Sharique M, Majhi J, Molander GA. From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Org Lett 2022; 24:4750-4755. [PMID: 35766376 PMCID: PMC10412001 DOI: 10.1021/acs.orglett.2c01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple and practical method is disclosed to achieve the difunctionalization of styrenes, generating fluorinated benzyl bromides via a photoinduced atom transfer radical addition process. The developed method is mild, atom-economical, cost-effective, employs very low photocatalyst loading (1000 ppm), and is highly compatible with a broad range of functional groups on styrene. The versatility of the fluorinated benzyl bromides is demonstrated through their derivatization to a variety of valuable compounds.
Collapse
Affiliation(s)
| | | | | | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Wu BB, Xu J, Gao Q, Bian KJ, Liu GK, Wang XS. A General and Efficient Solution to Monofluoroalkylation: Divergent Synthesis of Aliphatic Monofluorides with Modular Synthetic Scaffolds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bing-Bing Wu
- University of Science and Technology of China Chemistry CHINA
| | - Jie Xu
- University of Science and Technology of China Chemistry CHINA
| | - Qian Gao
- University of Science and Technology of China Chemistry CHINA
| | - Kang-Jie Bian
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Guo-Kai Liu
- Shenzhen University Pharmaceutical Sciences CHINA
| | - Xi-Sheng Wang
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
17
|
Wu MC, Chen YX, Li MZ, Xiao JA, Ye ZP, Guan JP, Xiang HY, Chen K, Yang H. Photocatalyzed Defluorinative Dichloromethylation of α-CF 3 Alkenes Using CHCl 3 as the Radical Source. J Org Chem 2022; 88:6354-6363. [PMID: 35723452 DOI: 10.1021/acs.joc.2c01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced defluorinative dichloromethylation of α-CF3 alkenes was developed with cheap and readily accessible chloroform simultaneously as a dichloromethylation reagent and reaction medium, leading to the facile preparation of new polyhalogenated scaffolds. Notably, the change from CHCl3 to CDCl3 offers a straightforward pathway for accessing the deuterated analogues with excellent degrees of D incorporation. Mechanistic studies suggested the reaction underwent a radical addition of the dichloromethyl radical with alkenes, followed by sequential single-electron transfer and defluorination. This protocol features mild conditions, easy operation, facile scalability, and high efficiency, allowing convenient access to dichloronated gem-difluoroalkenes.
Collapse
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
18
|
Russo C, Brunelli F, Tron GC, Giustiniano M. Visible-Light Photoredox Catalysis in Water. J Org Chem 2022; 88:6284-6293. [PMID: 35700388 DOI: 10.1021/acs.joc.2c00805] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of water in organic synthesis draws attention to its green chemistry features and its unique ability to unveil unconventional reactivities. Herein, literature about the use of water as a reaction medium under visible-light photocatalytic conditions is summarized in order to highlight challenges and opportunities. Accordingly, this Synopsis has been divided into four different sections focused on (1) the unconventional role of water in photocatalytic reactions, (2) in-/on-water reactions, (3) water-soluble photocatalysts, and (4) photomicellar catalytic systems.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Francesca Brunelli
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
19
|
Kostromitin VS, Levin VV, Dilman AD. Organophotoredox-Catalyzed Reductive Tetrafluoroalkylation of Alkenes. J Org Chem 2022; 88:6523-6531. [PMID: 35561256 DOI: 10.1021/acs.joc.2c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for the hydroperfluoroalkylation of alkenes with 1,2-dibromotetrafluoroethane leading to tetrafluorinated bromides is described. The reaction is conveniently performed under blue light irradiation using an organic photocatalyst and ascorbic acid as a reducing agent. Primary products can be further functionalized via radical pathways affording various tetrafluorinated compounds.
Collapse
Affiliation(s)
- Vladislav S Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
20
|
Boldt AM, Dickinson SI, Ramirez JR, Benz-Weeden AM, Wilson DS, Stevenson SM. Reactions of benzyltriphenylphosphonium salts under photoredox catalysis. Org Biomol Chem 2021; 19:7810-7815. [PMID: 34549228 DOI: 10.1039/d1ob01570b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of benzyltriphenylphosphonium salts as alkyl radical precursors using photoredox catalysis is described. Depending on substituents, the benzylic radicals may couple to form C-C bonds or abstract a hydrogen atom to form C-H bonds. A natural product, brittonin A, was also synthesized using this method.
Collapse
Affiliation(s)
- Andrew M Boldt
- Department of Chemistry, Carthage College, Kenosha, WI 53140, USA.
| | | | | | | | - David S Wilson
- Department of Chemistry, Carthage College, Kenosha, WI 53140, USA.
| | | |
Collapse
|
21
|
Hell SM, Meyer CF, Ortalli S, Sap JBI, Chen X, Gouverneur V. Hydrofluoromethylation of alkenes with fluoroiodomethane and beyond. Chem Sci 2021; 12:12149-12155. [PMID: 34667580 PMCID: PMC8457377 DOI: 10.1039/d1sc03421a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/07/2021] [Indexed: 01/02/2023] Open
Abstract
A process for the direct hydrofluoromethylation of alkenes is reported for the first time. This straighforward silyl radical-mediated reaction utilises CH2FI as a non-ozone depleting reagent, traditionally used in electrophilic, nucleophilic and carbene-type chemistry, but not as a CH2F radical source. By circumventing the challenges associated with the high reduction potential of CH2FI being closer to CH3I than CF3I, and harnessing instead the favourable bond dissociation energy of the C–I bond, we demonstrate that feedstock electron-deficient alkenes are converted into products resulting from net hydrofluoromethylation with the intervention of (Me3Si)3SiH under blue LED activation. This deceptively simple yet powerful methodology was extended to a range of (halo)methyl radical precursors including ICH2I, ICH2Br, ICH2Cl, and CHBr2F, as well as CH3I itself; this latter reagent therefore enables direct hydromethylation. This versatile chemistry was applied to 18F-, 13C-, and D-labelled reagents as well as complex biologically relevant alkenes, providing facile access to more than fifty products for applications in medicinal chemistry and positron emission tomography. Herein, we report the direct hydro(halo)methylation of alkenes from a variety of (halo)methyl iodides (including F-18, C-13, D-2 isotopologues), enabling the incorporation of a plethora of C-1 fragments into complex biologically active molecules.![]()
Collapse
Affiliation(s)
- Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Sebastiano Ortalli
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Xuanxiao Chen
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
22
|
He Y, Huang Z, Ma J, Huang F, Lin J, Wang H, Xu BH, Zhou YG, Yu Z. Palladium-Catalyzed Fluoroalkylation via C(sp 3)-S Bond Cleavage of Vinylsulfonium Salts. Org Lett 2021; 23:6110-6114. [PMID: 34283623 DOI: 10.1021/acs.orglett.1c02172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An interrupted Pummerer/palladium-catalyzed fluoro-alkylation strategy was developed for alkenyl C-H fluoroalkylthiolation. Palladium-catalyzed ring-opening fluoroalkylation via aliphatic C-S bond cleavage of the vinylsulfonium salts efficiently afforded fluoroalkylthiolated alkene derivatives from readily available alkene substrates and CsF. The protocol features broad substrate scopes and good functional group tolerance under an air atmosphere. The practicability of the synthetic method was demonstrated by transforming the multisubstituted alkene products to diverse fluoroalkylthiolated N-heterocycles.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jie Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|