1
|
Mondal S, Debnath S, Lo R, Maity S. Photoredox Activation of Donor-Acceptor Cyclopropanes: Distonic Radical Cation Reactivity in [3+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2025; 64:e202419426. [PMID: 39658810 DOI: 10.1002/anie.202419426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Altering the reactivity model of a molecule can potentially eliminate limitations existing in its current paradigm. When it comes to the activation of Donor-Acceptor Cyclopropanes (DACs), Lewis acids have been the state-of-the-art. Although a variety of polarized 2π components have been successfully coupled with DACs for [3+2] cycloaddition, unpolarized alkenes prove to be a roadblock due to an inherent polarity mismatch with the Lewis acid-mediated 1,3-zwitterionic intermediate. Hereby, harnessing the distonic radical cation mode of cleavage by photoredox catalysis overcomes this mismatched reactivity of the zwitterionic intermediate, providing a unique route to highly substituted cyclopentanes and cyclopentenes. Expansion of this strategy to bicyclo[1.1.0]butanes enables access to bicyclo[3.1.1]heptanes (BCHs) through a facile [3σ+2σ] cycloaddition. Detailed mechanistic insights are also provided using dispersion-corrected density functional theory.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Saradindu Debnath
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
2
|
Velichko V, Moi D, Soddu F, Scipione R, Podda E, Luridiana A, Cambie D, Secci F, Cabua MC. Two-step continuous flow-driven synthesis of 1,1-cyclopropane aminoketones. Chem Commun (Camb) 2025; 61:1391-1394. [PMID: 39711176 DOI: 10.1039/d4cc04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The continuous flow telescoped synthesis of 1,1-cyclopropane aminoketones was achieved by optimizing the photocyclization of 1,2-diketones to 2-hydroxycylobutanones (HCBs) and their reaction with aryl- and alkylamines, via tandem condensation C4-C3-ring contraction reaction. With the achieved operational conditions, we were able to obtain a library of cyclopropylamines with good chemical yields, high productivity, and short residence times.
Collapse
Affiliation(s)
- Viktoria Velichko
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Davide Moi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Francesco Soddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Roberto Scipione
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Enrico Podda
- Centro Servizi d'Ateneo per la Ricerca CeSAR, 09042, Monserrato (Cagliari), Italy
| | - Alberto Luridiana
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Dario Cambie
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| | - Maria Chiara Cabua
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042, Monserrato (Cagliari), Italy.
| |
Collapse
|
3
|
Harmata AS, Tatunashvili E, Chang A, Wang T, Stephenson CRJ. Bicyclo[2.1.1]hexanes via Intramolecular Formal (3+2)-Cycloaddition. Angew Chem Int Ed Engl 2025; 64:e202413695. [PMID: 39393006 DOI: 10.1002/anie.202413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
We report a synthesis of bicyclo[2.1.1]hexanes via an intramolecular formal (3+2) cycloaddition of allylated cyclopropanes bearing a 4-nitrobenzimine substituent. Both activated and unactivated alkenes are tolerated in the transformation. The bicyclic imine products are prone to photo-induced ring opening, allowing for the epimerization of C5-stereogenic compounds.
Collapse
Affiliation(s)
- Alexander S Harmata
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Elene Tatunashvili
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Abigail Chang
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, United States
| | - Tao Wang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Corey R J Stephenson
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
4
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Li S, Zhou L. Photocatalytic (3 + 3) Annnulation of Vinyldiazo Compounds and Aminocyclopropanes. Org Lett 2024; 26:3294-3298. [PMID: 38567829 DOI: 10.1021/acs.orglett.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A (3 + 3) annulation of aminocyclopropanes and vinyldiazo compounds enabled by organo-photocatalysis is described. The reaction allows the regioselective synthesis of cyclohexenes bearing adjacent amino and carbonyl groups with broad functional group tolerance. In a departure from previous reports, our work demonstrated that a distonic radical cation can be preferentially intercepted by weakly nucleophilic vinyldiazo compounds, followed by an exclusive 6-endo radical cyclization for ring closure. Based on the interaction between adjacent amino and ester groups, the products can be further converted to cyclohexene-fused 1,3-oxazinane and azetidine.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Lv S, Xu WF, Yang TY, Lan MX, Xiao RX, Mou XQ, Chen YZ, Cui BD. Iron(II)-Catalyzed Radical [3 + 2] Cyclization of N-Aryl Cyclopropylamines for the Synthesis of Polyfunctionalized Cyclopentylamines. Org Lett 2024; 26:3151-3157. [PMID: 38564713 DOI: 10.1021/acs.orglett.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A facile iron(II)-catalyzed radical [3 + 2] cyclization of N-aryl cyclopropylamines with various alkenes to access the structurally polyfunctionalized cyclopentylamine scaffolds has been developed. Using low-cost FeCl2·4H2O as catalyst, N-aryl cyclopropylamines could be utilized to react with a wide range of alkenes including exocyclic/acyclic terminal alkenes, cycloalkenes, alkenes from the natural-occurring compounds (Alantolactone, Costunolide), and known drugs (Ibuprofen, l-phenylalanine, Flurbiprofen) to obtain a variety of cyclopentylamines fused with different useful motifs in generally good yields and diastereoselectivities. The highlight of this protocol is also featured by no extra oxidant, no base, EtOH as the solvent, gram-scale synthesis, and further diverse transformations of the synthetic products. More importantly, an iron(II)-mediated hydrogen radical dissociation pathway was proposed based on the mechanism research experiments.
Collapse
Affiliation(s)
- Shuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Feng Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ming-Xing Lan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ren-Xu Xiao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
7
|
Xu PC, Qian S, Meng X, Zheng Y, Huang S. Electrochemical Ring-Opening of Cyclopropylamides with Alcohols toward the Synthesis of 1,3-Oxazines. Org Lett 2024; 26:2806-2810. [PMID: 38127264 DOI: 10.1021/acs.orglett.3c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An electrochemical method is presented to construct 1,3-oxazines by the oxidative ring-opening of cyclopropylamides with alcohols. This method avoids the use of external oxidants and thus shows good functional group tolerance. The substrate scope covers primary, secondary, and tertiary alcohols as well as (hetero)aryl amide-substituted cyclopropanes.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiangtai Meng
- Sinopec Maoming Petrochemical Company, Maoming, Guangdong 525000, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
8
|
Liu Y, Ding C, Huang JJ, Zhou Q, Xiong BQ, Tang KW, Huang PF. Visible-light-induced synthesis of 2,4-disubstituted quinolines from o-vinylaryl isocyanides and oxime esters. Org Biomol Chem 2024; 22:1458-1465. [PMID: 38282546 DOI: 10.1039/d3ob02060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A visible-light-induced radical cyclization reaction of o-vinylaryl isocyanides and oxime esters to access various 2,4-disubstituted quinolines was disclosed. Oxime esters were employed as acyl radical precursors via the carbon-carbon bond cleavage. It provided an effective way for the synthesis of 2-acyl-4-arlysubstituted quinolines under mild conditions and exhibited good functional group tolerance and substrate applicability.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Chuan Ding
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Jing Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
9
|
Mazzarella D, Bortolato T, Pelosi G, Dell'Amico L. Photocatalytic (3 + 2) dipolar cycloadditions of aziridines driven by visible-light. Chem Sci 2023; 15:271-277. [PMID: 38131079 PMCID: PMC10732004 DOI: 10.1039/d3sc05997a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, we document the design and development of a novel (3 + 2) cycloaddition reaction aided by the activity of an organic photocatalyst and visible light. The process is extremely fast, taking place in a few minutes, with virtually complete atom economy. A large variety of structurally diverse aziridines were used as masked ylides in the presence of different types of dipolarophiles (28 examples with up to 94% yield and >95 : 5 dr). Mechanistic insights obtained from photophysical, electrochemical and experimental studies highlight that the chemistry is driven by the in situ generation of the reactive ylide through two consecutive electron-transfer processes. We also report an aerobic cascade process, where an additional oxidation step grants access to a vast array of pyrrole derivatives (19 examples with up to 95% yield). Interestingly, the extended aromatic core exhibits a distinctive absorption and emission profile, which can be easily used to tag the effectiveness of this covalent linkage.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Tommaso Bortolato
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze 17 43124 Parma Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| |
Collapse
|
10
|
Zhang X, Wang Y, Liu J, Tian C, Li X, Xie P, Zhu Z, Yao T. Synthesis of 3-aminotetrahydro-1 H-carbazols by visible-light photocatalyzed cycloaddition of cyclopropylanilines with 2-alkenylarylisocyanides. Chem Commun (Camb) 2023; 59:14423-14426. [PMID: 37975829 DOI: 10.1039/d3cc04674e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A visible-light-induced cycloaddition between 2-alkenylarylisocyanides and cyclopropylanilines is reported. This cascade radical reaction constructs two new C-C bonds and two rings to afford 3-aminotetrahydro-1H-carbazols with high atom and step economy. The mechanism is rationalized as involving sequential distonic radical cation formation/isocyanide insertion/5-exo-trig cyclization/intramolecular iminium ion addition/tautomerization.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Yao Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jiaxin Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chengpeng Tian
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiang Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Pan Xie
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhenyu Zhu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
11
|
Niu Y, Yao L, Zhao H, Tang X, Zhao Q, Wu Y, Han B, Huang W, Zhan G. Construction of Cyclopentanes Consisting of Five Stereocenters via NHC-Catalyzed Cascade Reactions of Enals with Oxindole-Dienones. Org Lett 2023; 25:8445-8450. [PMID: 37975710 DOI: 10.1021/acs.orglett.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Despite the widespread presence of the chiral cyclopentane motif, the asymmetric synthesis of cyclopentanes containing five stereocenters remains a formidable challenge. Here, we present an N-heterocyclic carbene (NHC)-catalyzed cascade reaction of enal and oxindole-dienone, which allows access to spiroxindole cyclopentanes featuring a complete set of chiral centers on the five-membered carbocycle. This strategy, characterized by the formation of multiple bonds and chiral centers, demonstrates a broad substrate scope, exclusive diastereoselectivity, and up to 99:1 er.
Collapse
Affiliation(s)
- Yadi Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Laiping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hongli Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yuling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
12
|
Qiu J, Li W, Li X, Cao Y, Pan CX, Li H. Radical-Based cis-Selective Annulations of N,N'-Cyclic Azomethine Imines with N-Sulfonyl Cyclopropylamines. Org Lett 2023; 25:8000-8004. [PMID: 37910446 DOI: 10.1021/acs.orglett.3c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Azomethine imines, broadly known as 1,3-dipoles, efficiently produce synthetically and biologically significant dinitrogen-fused heterocycles via predominantly concerted or ionic pathways. Herein, we describe a radical-based annulation of azomethine imines utilizing visible-light photoredox catalysis for the first time. This strategy enables the synthesis of dinitrogen-fused saturated six-membered cyclic products that have traditionally been difficult to access. Notably, our process exhibits exceptional cis diastereoselectivity, controlled by the anomeric effect. Initial mechanistic investigations reveal a tandem process comprising intermolecular radical addition and intramolecular 6-exo-trig cyclization. This work illustrates potential within the realm of visible-light-driven radical cyclization reactions involving azomethine imines.
Collapse
Affiliation(s)
- Jie Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
13
|
Harmata AS, Roldan BJ, Stephenson CRJ. Formal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems. Angew Chem Int Ed Engl 2023; 62:e202213003. [PMID: 36239998 PMCID: PMC9852095 DOI: 10.1002/anie.202213003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 12/05/2022]
Abstract
The field of strain-driven, radical formal cycloadditions is experiencing a surge in activity motivated by a renaissance in free radical chemistry and growing demand for sp3 -rich ring systems. The former has been driven in large part by the rise of photoredox catalysis, and the latter by adoption of the "Escape from Flatland" concept in medicinal chemistry. In the years since these broader trends emerged, dozens of formal cycloadditions, including catalytic, asymmetric variants, have been developed that operate via radical mechanisms. While cyclopropanes have been studied most extensively, a variety of strained ring systems are amenable to the design of analogous reactions. Many of these processes generate lucrative, functionally decorated sp3 -rich ring systems that are difficult to access by other means. Herein, we summarize recent efforts in this area and analyze the state of the field.
Collapse
Affiliation(s)
- Alexander S. Harmata
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| | - Bec. J. Roldan
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| | - Corey R. J. Stephenson
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| |
Collapse
|
14
|
Xu M, Wang Z, Sun Z, Ouyang Y, Ding Z, Yu T, Xu L, Li P. Diboron(4)-Catalyzed Remote [3+2] Cycloaddition of Cyclopropanes via Dearomative/Rearomative Radical Transmission through Pyridine. Angew Chem Int Ed Engl 2022; 61:e202214507. [PMID: 36344444 DOI: 10.1002/anie.202214507] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/09/2022]
Abstract
Ring structures such as pyridine, cyclopentane or their combinations are important motifs in bioactive molecules. In contrast to previous cycloaddition reactions that necessitated a directly bonded initiating functional group, this work demonstrated a novel through-(hetero)arene radical transmission concept for selective activation of a remote bond. An efficient, metal-free and atom-economical [3+2] cycloaddition between 4-pyridinyl cyclopropanes and alkenes or alkynes has been developed for modular synthesis of pyridine-substituted cyclopentanes, cyclopentenes and bicyclo[2.1.1]hexanes that are difficult to access using known methods. This complexity-building reaction was catalyzed by a very simple and inexpensive diboron(4) compound and took place via dearomative/rearomative processes. The substrate scope was broad and more than 100 new compounds were prepared in generally high yields. Mechanistic experiments and density function theory (DFT) investigation supported a radical relay catalytic cycle involving alkylidene dihydropyridine radical intermediates and boronyl radical transfer.
Collapse
Affiliation(s)
- Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhaohui Sun
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Luo Z, Cao B, Song T, Xing Z, Ren J, Wang Z. Visible-Light Organophotoredox-Mediated [3 + 2] Cycloaddition of Arylcyclopropylamine with Structurally Diverse Olefins for the Construction of Cyclopentylamines and Spiro[4. n] Skeletons. J Org Chem 2022; 87:15511-15529. [PMID: 36318193 DOI: 10.1021/acs.joc.2c02061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We developed a visible-light-mediated [3 + 2] cycloaddition of arylcyclopropylamine with structurally diverse olefins using QXPT-NPh as a highly efficient organic photoredox catalyst. We first achieved the use of various alkyl-substituted alkenes in intermolecular [3 + 2] cycloadditions with cyclopropylamine. We also developed a general and efficient strategy for the construction of structurally diverse cyclopentane-based spiro[4.n] skeletons with 1,3-difunctional groups, which broadly exist in natural products and synthetic molecules. Furthermore, we proposed a hydrogen-bond mode between the arylcyclopropylamine and the photocatalyst QXPT-NPh.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Bowen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Tianhang Song
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Zequn Xing
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Jun Ren
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| |
Collapse
|
16
|
Wang MM, Nguyen TVT, Waser J. Activation of aminocyclopropanes via radical intermediates. Chem Soc Rev 2022; 51:7344-7357. [PMID: 35938356 DOI: 10.1039/d2cs00090c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt AM, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022; 61:e202205454. [PMID: 35587213 PMCID: PMC9296615 DOI: 10.1002/anie.202205454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 07/27/2023]
Abstract
In this paper is described an easily synthesized chiral diazaborolidine that is inexpensive, stable, and provides excellent stereoselection across a number of reaction classes. These versatile compounds possess utility in four different classes of cycloaddition reactions, offering good yield and stereoselectivity. X-ray structure analysis provides insight about the origin of stereocontrol.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Peilin Xu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Alex J Vendola
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | | | - Robert A Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | - James P Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
18
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt A, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Peilin Xu
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Alex J. Vendola
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | | | - Robert A. Singer
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
19
|
Guo R, Chang YC, Herter L, Salome C, Braley SE, Fessard TC, Brown MK. Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. J Am Chem Soc 2022; 144:7988-7994. [PMID: 35476547 PMCID: PMC9832330 DOI: 10.1021/jacs.2c02976] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Saturated bicycles are becoming ever more important in the design and development of new pharmaceuticals. Here a new strategy for the synthesis of bicyclo[2.1.1]hexanes is described. These bicycles are significant because they have defined exit vectors, yet many substitution patterns are underexplored as building blocks. The process involves sensitization of a bicyclo[1.1.0]butane followed by cycloaddition with an alkene. The scope and mechanistic details of the method are discussed.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yu-Che Chang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Loic Herter
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Christophe Salome
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas C Fessard
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Kumar M, Verma S, Mishra V, Reiser O, Verma AK. Visible-Light-Accelerated Copper-Catalyzed [3 + 2] Cycloaddition of N-Tosylcyclopropylamines with Alkynes/Alkenes. J Org Chem 2022; 87:6263-6272. [PMID: 35476544 DOI: 10.1021/acs.joc.2c00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper-catalyzed [3 + 2] cycloadditions of N-tosylcyclopropylamine with alkynes and alkenes have been accomplished under visible light irradiation. The developed approach is compatible with a range of functionalities and allows the synthesis of diversified aminated cyclopentene and cyclopentane derivatives being relevant for drug synthesis. The protocol is operationally simple and economically affordable as it does not require any ligand, base, or additives. As the key step, the one-electron oxidation of the N-tosyl moiety by visible light-induced homolysis of a transient Cu(II)-tosylamide complex is proposed, providing a facile entry for N-centered radicals.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.,Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vivek Mishra
- Amity Institute of Click-Chemistry Research and Studies, Amity University, Noida 201313, India
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Saha D, Taily IM, Banerjee N, Banerjee P. Electricity mediated [3+2]-cycloaddition of N-sulfonylcyclopropanes with olefins via N-centered radical intermediates: access to cyclopentane analogs. Chem Commun (Camb) 2022; 58:5459-5462. [PMID: 35352071 DOI: 10.1039/d2cc00761d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An external oxidant free electrochemical strategy is designed towards the β-scission of strained C-C bonds in cyclopropylamine. Moreover, the mechanistic studies ascertained that the methodology encompasses the N-center radical (NCRs) route and provides access to di- or tri-substituted cyclopentane analogs.
Collapse
Affiliation(s)
- Debarshi Saha
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Nakshatra Banerjee
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| |
Collapse
|
22
|
Dai Y, Liang S, Zeng G, Huang H, Zhao X, Cao S, Jiang Z. Asymmetric [3 + 2] photocycloadditions of cyclopropylamines with electron-rich and electron-neutral olefins. Chem Sci 2022; 13:3787-3795. [PMID: 35432885 PMCID: PMC8966714 DOI: 10.1039/d1sc07044d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Radical addition to olefins is a common and useful chemical transformation. In the context of offering enantioenriched three-dimensional molecules via such a highly reactive process, chiral hydrogen-bonding (H-bonding) catalysis has been widely used to provide enantiocontrol. The current strategies for operating H-bonding induction are confined to following that are prevalent in ionic-type manifolds. Here, we report a novel protocol towards electron-rich olefins based on converting these species from acting as H-bonding donors to acceptors. It facilitates the first development of asymmetric [3 + 2] photocycloadditions with cyclopropylamines. The method is also effective for electron-neutral olefins, in which the successful construction of all-carbon quaternary stereocentres from 1,1-diaryl ethylenes that feature two structurally similar aryl substituents demonstrates the versatility of this new chiral H-bonding catalytic strategy. Furthermore, the importance of the obtained six kinds of products in pharmaceuticals and asymmetric catalysis underscores the practicability of this work. Radical addition to olefins is a common and useful chemical transformation.![]()
Collapse
Affiliation(s)
- Yating Dai
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Shuangshuang Liang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan P. R. China 475004
| | - Guangkuo Zeng
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan P. R. China 475004
| | - Hongchun Huang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan P. R. China 475004
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan P. R. China 475004
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan P. R. China 453007 .,International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan P. R. China 475004
| |
Collapse
|
23
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
24
|
Harmata AS, Spiller TE, Sowden MJ, Stephenson CRJ. Photochemical Formal (4 + 2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes. J Am Chem Soc 2021; 143:21223-21228. [PMID: 34902245 PMCID: PMC9241356 DOI: 10.1021/jacs.1c10541] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amines containing bridged bicyclic carbon skeletons are desirable building blocks for medicinal chemistry. Herein, we report the conversion of bicyclo[1.1.1]pentan-1-amines to a wide range of polysubstituted bicyclo[3.1.1]heptan-1-amines through a photochemical, formal (4 + 2)-cycloaddition of an intermediate imine diradical. To our knowledge, this is the first reported method to convert the bicyclo[1.1.1]pentane skeleton to the bicyclo[3.1.1]heptane skeleton. Hydrolysis of the imine products gives complex, sp3-rich primary amine building blocks.
Collapse
Affiliation(s)
| | | | | | - Corey R. J. Stephenson
- Corresponding Author Corey R. J. Stephenson – Department of Chemistry, University of Michigan, 940 North University Avenue, Ann Arbor, Michigan 48109, United States;
| |
Collapse
|
25
|
Liu Z, Wu S, Chen Y. Selective C(sp 3)-C(sp 3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
26
|
Wang MM, Nguyen TVT, Waser J. Diamine Synthesis via the Nitrogen-Directed Azidation of σ- and π-C-C Bonds. J Am Chem Soc 2021; 143:11969-11975. [PMID: 34339216 DOI: 10.1021/jacs.1c06700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diamines are essential building blocks for the synthesis of agrochemicals, drugs, and organic materials, yet their synthesis remains challenging, as both nitrogens need to be differentiated and diverse substitution patterns (1,2, 1,3, or 1,4) are required. We report herein a new strategy giving access to 1,2, 1,3, and 1,4 amido azides as orthogonally protected diamines based on the nitrogen-directed diazidation of alkenes, cyclopropanes, and cyclobutanes. Commercially available copper thiophene-2-carboxylate (CuTc, 2 mol %) as catalyst promoted the diazidation of both π and σ C-C bonds within 10 min in the presence of readily available oxidants and trimethylsilyl azide. Selective substitution of the formed α-amino azide by carbon nucleophiles (electron-rich aromatic, malonate, organosilicon, organoboron, organozinc, and organomagnesium compounds) was then achieved in a one-pot fashion, leading to the formation of 1,2-, 1,3-, and 1,4-diamines with the amino groups protected orthogonally as an amide/carbamate and an azide.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|