1
|
Mata G, Mailyan AK, Fournier J, Beatty JW, Leleti MR, Powers JP, Lawson KV. Stereodivergent Synthesis of the Vicinal Difluorinated Tetralin of Casdatifan Enabled by Ru-Catalyzed Transfer Hydrogenation. Org Lett 2025; 27:833-839. [PMID: 39803968 DOI: 10.1021/acs.orglett.4c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We disclose a stereodivergent strategy to prepare vicinal difluorinated tetralins from γ-substituted tetralones via a combination of catalyst-controlled transfer hydrogenation and substrate-controlled fluorinations. This process is easily scalable and amenable to highly functionalized substrates, as demonstrated here in the late-stage synthesis of casdatifan, a clinical-stage inhibitor of hypoxia-inducible factor-2α. Analysis of the physicochemical properties of casdatifan, which features a cis-vicinal difluoride, revealed a higher level of facial polarization compared to its trans-vicinal difluoride isomers.
Collapse
Affiliation(s)
- Guillaume Mata
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Artur K Mailyan
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jeremy Fournier
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Joel W Beatty
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Manmohan R Leleti
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P Powers
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V Lawson
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
2
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
3
|
He B, Chen GQ, Zhang X. Highly efficient synthesis of enantioenriched vicinal halohydrins via Ir-catalyzed asymmetric hydrogenation using dynamic kinetic resolution. Chem Commun (Camb) 2024; 60:9785-9788. [PMID: 39158973 DOI: 10.1039/d4cc02529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A novel synthetic route was developed for the construction of chiral cis-vicinal halohydrins derivatives through Ir/f-phamidol-catalysed asymmetric hydrogenation of corresponding α-halogenated ketones with high yields (up to 99% yield), excellent diastereoselectivities (>20 : 1 dr), enantioselectivities (up to 99% ee), and high substrate catalyst ratio (S/C = 1000).
Collapse
Affiliation(s)
- Bin He
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xumu Zhang
- Medi-X Pingshan and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
4
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
6
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
8
|
Hilt G. The Synthetic Approaches to 1,2-Chlorohydrins. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractThis short review highlights the hitherto realised synthetic approaches towards organic 1,2-chlorohydrins by functionalisation of alkenes (i.e., 1,2-chlorohydroxylation), which is the most prominent access route to this class of compounds. Also, some other synthetic approaches involving the reduction of α-chloroketones, the epoxide opening ring by chloride anions and the utilisation of Grignard reagents for the synthesis of these compounds and chlorination of allylic alcohols are highlighted. Finally, enzymatic reactions for the formation of chlorohydrins are briefly summarised followed by a short view on natural products containing this moiety.1 Introduction2 Applications for the Synthesis of 1,2-Chlorohydrins2.1 Chlorohydroxylation of Alkenes2.2 Reduction of Chloroketones2.3 Metalorganic Reagents2.4 Epoxide Ring Opening2.5 Chlorination of Allylic Alcohols2.6 Biochemical Methods2.7 Selected Applications in Natural Product Total Synthesis3 Conclusion
Collapse
|
9
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
10
|
Zheng Y, Wills M. Asymmetric transfer hydrogenation of boronic acid pinacol ester (Bpin)-containing acetophenones. Org Biomol Chem 2022; 20:3742-3746. [PMID: 35438123 DOI: 10.1039/d2ob00569g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Bpin-containing acetophenone derivatives were reduced by asymmetric transfer hydrogenation (ATH), using Noyori-Ikariya catalysts, with formic acid/triethylamine, to alcohols in high ee when the Bpin is in the para- or meta-position. Substrates containing ortho-Bpin groups were reduced in lower ee, with formation of a cyclic boron-containing group. The products were converted to substituted derivatives using Pd-catalysed coupling reactions. The results represent the first examples of ATH of Bpin-containing ketones.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
11
|
Li J, Ye J, Zhou J, Li J, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Hydrogenation of α-Substituted Tetralones via a Dynamic Kinetic Resolution. Chem Commun (Camb) 2022; 58:4905-4908. [DOI: 10.1039/d2cc01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient RuPHOX-Ru catalyzed asymmetric hydrogenation of α-substituted tetralones via a dynamic kinetic resolution has been achieved for the synthesis of chiral tetrahydronaphthols. The mechanism study indicated that the hydrogenation...
Collapse
|
12
|
Gaspar FV, Caleffi GS, Costa‐Júnior PCT, Costa PRR. Enantioselective Synthesis of Isoflavanones and Pterocarpans through a Ru
II
‐Catalyzed ATH‐DKR of Isoflavones. ChemCatChem 2021. [DOI: 10.1002/cctc.202101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Francisco V. Gaspar
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Guilherme S. Caleffi
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Paulo C. T. Costa‐Júnior
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica (LQB) Instituto de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Av. Carlos Chagas Filho 373, Bloco H Cidade Universitária 21941-902 Rio de Janeiro RJ Brasil
| |
Collapse
|
13
|
Ma X, Guillet SG, Liu Y, Cazin CSJ, Nolan SP. Simple synthesis of [Ru(CO 3)(NHC)( p-cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Trans 2021; 50:13012-13019. [PMID: 34581364 DOI: 10.1039/d1dt02098f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and facile protocol for the synthesis of a series of [Ru(NHC)(CO3)(p-cymene)] complexes is reported. This family of Ru-NHC complexes was obtained from imidazol(in)ium tetrafluoroborate or imidazolium hydrogen carbonate salts in moderate to excellent yields, employing sustainable weak base. The ruthenium complexes were successfully utilized in the transfer hydrogenation of ketones as highly active multifunctional catalysts.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Sébastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Yaxu Liu
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
Nakamura H, Yoshida M, Matsunami A, Kuwata S, Kayaki Y. Oxy-tethered Cp*Ir(III) complex as a competent catalyst for selective dehydrogenation from formic acid. Chem Commun (Camb) 2021; 57:5534-5537. [PMID: 33960337 DOI: 10.1039/d1cc01712h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bifunctional tethered iridium catalyst containing a 1,2-diphenylethylenediamine framework was synthesised for the first time. The ethereal tether chain was easily constructed via the intramolecular oxydefluorination of a perfluorophenylsulfonyl substituent by using a modified 1,2,3,4,5-pentamethylcyclopentadienyl ligand with a hydroxyalkyl chain. The conformationally constrained structure could hamper deactivation pathways in the catalytic hydrogen generation from formic acid, leading to advanced durability and complete conversion.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Minori Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Asuka Matsunami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shigeki Kuwata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
15
|
Park S, Lee HK. Efficient kinetic resolution in the asymmetric transfer hydrogenation of 3-aryl-indanones: applications to a short synthesis of (+)-indatraline and a formal synthesis of ( R)-tolterodine. RSC Adv 2021; 11:23161-23183. [PMID: 35480442 PMCID: PMC9036567 DOI: 10.1039/d1ra04538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Efficient kinetic resolution occurs in ATH of racemic 3-arylindanones using (R,R)-or (S,S)-Ts-DENEB catalyst and HCO2H/Et3N mixture providing near equal yields of cis-3-arylindanols and unreacted 3-arylindanones with excellent stereoselectivities.
Collapse
Affiliation(s)
- Songsoon Park
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| | - Hyeon-Kyu Lee
- Korea Chemical Bank
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- Korea
- Department of Medicinal Chemistry and Pharmacology
| |
Collapse
|