1
|
Akkawi NR, Nicewicz DA. Photochemically Enabled Total Syntheses of Stemoamide Alkaloids. J Am Chem Soc 2025; 147:15482-15489. [PMID: 40261674 DOI: 10.1021/jacs.5c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Photochemical transformations continue to serve as powerful synthetic tools for rapid chemical synthesis and diversification. Recent developments in photoredox and photochemical reactivity have captured the attention of researchers in a wide array of disciplines, where many new applications of these reactions have been reported. We disclose the use of photochemical synthetic strategies as a modern approach to natural product synthesis that leverages the inherent reactivity of radicals as a platform for constructing complex scaffolds. We demonstrate this in an iterative photochemical synthesis, offering novel synthetic tactics, mild conditions, and operationally simple synthetic procedures to construct three stemoamide alkaloids in the shortest sequences to date. The key disconnection involves the use of both the oxidative and reductive capabilities of an acridinium photoredox catalyst to forge the densely functionalized tetrahydrofuran ring via a polar radical crossover cycloaddition. The resultant butyrolactone serves as a handle for a radical polar crossover cycloaddition to construct a unique oxaspirocyclic butenolide. Finally, a late-stage heteroarene transmutation provides a linchpin intermediate used to access three stemoamide alkaloids. The efficiency of these syntheses exemplifies the power of this approach while also demonstrating a departure from traditional disconnections and shedding light on a new type of synthetic art.
Collapse
Affiliation(s)
- Nicholas R Akkawi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
2
|
Zhang C, Jiang Z. Visible-light-driven enantioselective protonation: a new Frontier in asymmetric catalysis. Chem Commun (Camb) 2025. [PMID: 40326466 DOI: 10.1039/d4cc06530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Enantioselective protonation represents a direct and effective method for constructing tertiary carbon stereocenters, which are prevalent in natural products and bioactive compounds. However, achieving catalytic asymmetric protonation has long posed challenges due to difficulties in controlling stereoselectivity. The small size of protons and their rapid transfer rates complicate the selective delivery to active intermediates, resulting in convoluted reaction pathways and pronounced background reactions. In recent years, light-driven photocatalysis has emerged as a powerful strategy in asymmetric protonation reactions, significantly broadening the range of reaction pathways and substrate types. In this review, we highlight recent advancements in this area, focusing on photoinduced single-electron transfer and energy transfer processes, where photosensitizers generate reactive intermediates for asymmetric protonation. This approach not only expands the scope of asymmetric catalysis but also presents new opportunities for green and sustainable chemistry, effectively addressing critical challenges in the construction of complex molecules.
Collapse
Affiliation(s)
- Chenhao Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650500, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| |
Collapse
|
3
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
4
|
Raut RK, Matsutani S, Shi F, Kataoka S, Poje M, Mitschke B, Maeda S, Tsuji N, List B. Catalytic asymmetric fragmentation of cyclopropanes. Science 2024; 386:225-230. [PMID: 39388547 DOI: 10.1126/science.adp9061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
The stereoselective activation of alkanes constitutes a long-standing and grand challenge for chemistry. Although metal-containing enzymes oxidize alkanes with remarkable ease and selectivity, chemical approaches have largely been limited to transition metal-based catalytic carbon-hydrogen functionalizations. Alkanes can be protonated to form pentacoordinated carbonium ions and fragmented into smaller hydrocarbons in the presence of strong Brønsted acids. However, catalytic stereocontrol over such reactions has not previously been accomplished. We show here that strong and confined acids catalyze highly enantioselective fragmentations of a variety of cyclopropanes into the corresponding alkenes, expanding the boundaries of catalytic selective alkane activation. Computational studies suggest the involvement of the long-debated cycloproponium ions.
Collapse
Affiliation(s)
- Ravindra Krushnaji Raut
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Satoshi Matsutani
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Fuxing Shi
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Shuta Kataoka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Margareta Poje
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Benjamin List
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Li L, Zhang SQ, Cui X, Zhao G, Tang Z, Li GX. Catalytic Asymmetric Hydrogen Atom Transfer Based on a Chiral Hydrogen Atom Donor Generated from TBADT and Chiral BINOL. Org Lett 2024; 26:8371-8376. [PMID: 39316028 DOI: 10.1021/acs.orglett.4c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enantioselective radical reactions mediated by TBADT have seldom been seen due to the inherent challenges. Herein, we disclose a new chiral hydrogen atom transfer (HAT) reagent that was generated easily from 8H-BINOL, potassium carbonate, and TBADT under irradiation. The new complex 8H-BINOL/DTs could be used as a chiral H donor. A series of azaarenes could be converted into the corresponding chiral compounds via radical addition followed by enantioselective HAT.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
7
|
Gary S, Woolley J, Goia S, Bloom S. Unlocking flavin photoacid catalysis through electrophotochemistry. Chem Sci 2024; 15:11444-11454. [PMID: 39055006 PMCID: PMC11268482 DOI: 10.1039/d4sc03054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Molecular flavins are one of the most versatile photocatalysts. They can coordinate single and multiple electron transfer processes, gift hydrogen atoms, form reversible covalent linkages that support group transfer mechanisms, and impart photonic energy to ground state molecules, priming them for downstream reactions. But one mechanism that has not featured extensively is the ability of flavins to act as photoacids. Herein, we disclose our proof-of-concept studies showing that electrophotochemistry can transform fully oxidized flavin quinones to super-oxidized flavinium photoacids that successfully guide proton-transfer and deliver acid-catalyzed products. We also show that these species can adopt a second mechanism wherein they react with water to release hydroxyl radicals that facilitate hydrogen-atom abstraction and sp3C-H functionalization protocols. Together, this unprecedented bimodal reactivity enables electro-generated flavinium salts to affect synthetic chemistries previously unknown to flavins, greatly expanding their versatility as catalysts.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| | - Jack Woolley
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Sofia Goia
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick Coventry CV4 7AL UK
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| |
Collapse
|
8
|
Tan Z, Liu Y, Feng X. Photoredox-catalyzed C( sp3)─H radical functionalization to enable asymmetric synthesis of α-chiral alkyl phosphine. SCIENCE ADVANCES 2024; 10:eadn9738. [PMID: 38838147 PMCID: PMC11650896 DOI: 10.1126/sciadv.adn9738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
α-Chiral alkyl phosphines are privileged structural motifs with a wide application in organic and medical synthesis. It is highly desirable to develop stereoselective methods to prepare these enantioenriched molecules. The incorporation of C(sp3)─H functionalization and chiral phosphine chemistry is much less explored, probably because of the weak reactivity of C(sp3)─H bonds and/or the challenging site- and stereoselectivity issues. Herein, we disclose a synergistic catalysis system to enable an enantioselective radical addition process of α-substituted vinylphosphine oxides. An array of diverse α-chiral alkyl phosphors compounds is smoothly accessed by using the readily available chemicals as the inert C(sp3)─H bond reagent, such as sulfides, amines, alkenes, and toluene derivatives, exerting remarkable chemo-, site-, and enantioselectivity. On the basis of the mechanistic studies, both the C(sp3)─H bond activation and the stereochemistry-determining step are proposed to involve a single-electron transfer/proton transfer process.
Collapse
Affiliation(s)
- Zhenda Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
10
|
Singh PP, Sinha S, Gahtori P, Tivari S, Srivastava V. Recent advances of decatungstate photocatalyst in HAT process. Org Biomol Chem 2024; 22:2523-2538. [PMID: 38456306 DOI: 10.1039/d4ob00213j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The decatungstate anion (W10O324-) appears to exhibit especially interesting properties as a photocatalyst. Because of its unique photocatalytic properties, it is now recognised as a promising tool in organic chemistry. This study examines recent advances in decatungstate chemistry, primarily concerned with synthetic and, to some degree, mechanistic challenges. In this short review we have selected to give a number of illustrative examples that demonstrate the various applications of decatungstate in the hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002 Uttarakhand, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| |
Collapse
|
11
|
Wang GQ, Wang T, Zhang Y, Zhou YX, Yang D, Han P, Jing LH. Photoredox Metal-Free Synthesis of Unnatural β-Silyl-α-Amino Acids via Hydrosilylation. Chem Asian J 2023:e202300805. [PMID: 37906443 DOI: 10.1002/asia.202300805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
An efficient, practical and metal-free methodology for the synthesis of β-silyl-α-amino acid motifs via photoredox and hydrogen atom transfer (HAT) process is described. This protocol enables the direct hydrosilylation of dehydroalanine derivatives and tolerates a wide array of functional groups and synthetic handles, leading to valuable β-silyl-α-amino acids with moderate to good yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| |
Collapse
|
12
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
13
|
Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. C-H Bonds as Functional Groups: Simultaneous Generation of Multiple Stereocenters by Enantioselective Hydroxylation at Unactivated Tertiary C-H Bonds. J Am Chem Soc 2023; 145:15742-15753. [PMID: 37431886 PMCID: PMC10651061 DOI: 10.1021/jacs.2c10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 07/12/2023]
Abstract
Enantioselective C-H oxidation is a standing chemical challenge foreseen as a powerful tool to transform readily available organic molecules into precious oxygenated building blocks. Here, we describe a catalytic enantioselective hydroxylation of tertiary C-H bonds in cyclohexane scaffolds with H2O2, an evolved manganese catalyst that provides structural complementary to the substrate similarly to the lock-and-key recognition operating in enzymatic active sites. Theoretical calculations unveil that enantioselectivity is governed by the precise fitting of the substrate scaffold into the catalytic site, through a network of complementary weak non-covalent interactions. Stereoretentive C(sp3)-H hydroxylation results in a single-step generation of multiple stereogenic centers (up to 4) that can be orthogonally manipulated by conventional methods providing rapid access, from a single precursor to a variety of chiral scaffolds.
Collapse
Affiliation(s)
- Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Guillem Casadevall
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| |
Collapse
|
14
|
Ding D, Fan LF, Han ZY, Wang PS. Redox-Neutral 1,4-Dicarbonfunctionalization of 1,3-Butadiene by Merging Photoredox and Nickel Catalysis. Org Lett 2023; 25:210-214. [PMID: 36534618 DOI: 10.1021/acs.orglett.2c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The diverse functionalization of 1,3-butadiene provides wide applicability toward the synthesis of abundant and useful allylic compounds. Here, we describe a three-component and redox-neutral assembly of readily available C═X compounds, 1,3-butadiene, and various nucleophiles by merging photoredox and nickel catalysis, enabling the rapid synthesis of structurally diverse homoallyl amines and homoallylic alcohols.
Collapse
Affiliation(s)
- Du Ding
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lian-Feng Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Yong Han
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Qi X, Jambu S, Ji Y, Belyk KM, Panigrahi NR, Arora PS, Strotman NA, Diao T. Late-Stage Modification of Oligopeptides by Nickel-Catalyzed Stereoselective Radical Addition to Dehydroalanine. Angew Chem Int Ed Engl 2022; 61:e202213315. [PMID: 36175367 PMCID: PMC9773866 DOI: 10.1002/anie.202213315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Radical addition to dehydroalanine (Dha) represents an appealing, modular strategy to access non-canonical peptide analogues for drug discovery. Prior studies on radical addition to the Dha residue of peptides and proteins have demonstrated outstanding functional group compatibility, but the lack of stereoselectivity has limited the synthetic utility of this approach. Herein, we address this challenge by employing chiral nickel catalysts to control the stereoselectivity of radical addition to Dha on oligopeptides. The conditions accommodate a variety of primary and secondary electrophiles to introduce polyethylene glycol, biotin, halo-tag, and hydrophobic and hydrophilic side chains to the peptide. The reaction features catalyst control to largely override substrate-based control of stereochemical outcome for modification of short peptides. We anticipate that the discovery of chiral nickel complexes that confer catalyst control will allow rapid, late-stage modification of peptides featuring nonnatural sidechains.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Yining Ji
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Kevin M Belyk
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Neil A Strotman
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
16
|
Bell JD, Robb I, Murphy JA. Highly selective α-aryloxyalkyl C-H functionalisation of aryl alkyl ethers. Chem Sci 2022; 13:12921-12926. [PMID: 36519054 PMCID: PMC9645420 DOI: 10.1039/d2sc04463c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2024] Open
Abstract
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm). Experiments indicate that the reaction operates via direct single-electron oxidation of the arene substrate ArOCHRR' to its radical cation by the excited state organic photocatalyst; this is followed by deprotonation of the ArOC-H in the radical cation to yield the radical ArOC˙RR'. This radical then attacks the electrophile to form an intermediate alkyl radical that is reduced to complete the photocatalytic cycle. The oxidation step is selective for activated arenes (ArOR) over their non-activated counterparts and the subsequent deprotonation of the methoxy group affords the α-aryloxyalkyl radical that leads to a wide range of functionalised products in good to excellent yield.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| | - Iain Robb
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| | - John A Murphy
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
17
|
Luo Y, Wei Q, Yang L, Zhou Y, Cao W, Su Z, Liu X, Feng X. Enantioselective Radical Hydroacylation of α,β-Unsaturated Carbonyl Compounds with Aldehydes by Triplet Excited Anthraquinone. ACS Catal 2022; 12:12984-12992. [DOI: 10.1021/acscatal.2c04047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qi Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Schirmer TE, König B. Ion-Pairing Catalysis in Stereoselective, Light-Induced Transformations. J Am Chem Soc 2022; 144:19207-19218. [PMID: 36240496 DOI: 10.1021/jacs.2c04759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the rapid development of photoredox catalysis, numerous concepts for asymmetric induction were successfully and broadly adapted from polar two-electron transformations to radical chemistry. While this applies to organocatalysis or transition metal chemistry, asymmetric ion-pairing catalysis remains a niche application within light-driven reactions today. This perspective gives an overview of recent examples, strategies, and their application in stereoselective transformations at the interface of ion-pairing and photo(redox) catalysis.
Collapse
Affiliation(s)
- Tobias E Schirmer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
20
|
Varlet T, Bouchet D, Van Elslande E, Masson G. Decatungstate‐Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2‐Acylindolines. Chemistry 2022; 28:e202201707. [DOI: 10.1002/chem.202201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- HitCat Seqens-CNRS joint laboratory Seqens'Lab 8 Rue de Rouen 78440 Porcheville France
| |
Collapse
|
21
|
Cheng S, Li Q, Cheng X, Lin Y, Gong L. Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C–H Functionalization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Qianyu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yu‐Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005 China
| |
Collapse
|
22
|
Jin Y, Ng EWH, Fan T, Hirao H, Gong LZ. Photochemical Allylation of Alkanes Enabled by Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Elvis Wang Hei Ng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People’s Republic of China
| | - Tao Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People’s Republic of China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
23
|
Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. Visible-Light-Activated Asymmetric Addition of Hydrocarbons to Pyridine-Based Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Tan Y, Yin Y, Cao S, Zhao X, Qu G, Jiang Z. Conjugate addition-enantioselective protonation to forge tertiary stereocentres α to azaarenes via cooperative hydrogen atom transfer and chiral hydrogen-bonding catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63887-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Photocatalyzed site-selective C(sp3)-H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63953-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
27
|
Yuan X, Si YF, Li X, Wu S, Zeng FL, Lv QY, Yu B. Decatungstate-Photocatalyzed Direct Coupling of Inert Alkanes and Quinoxalin-2(1H)-ones with H2 Evolution. Org Chem Front 2022. [DOI: 10.1039/d1qo01894a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetrabutylammonium decatungstate (TBADT)-photocatalyzed direct coupling of inert alkanes and quinoxalin-2(1H)-ones with H2 evolution was developed at room temperature. The present transformation achieved the direct C(sp3)-H/C(sp2)-H coupling under noble metal-free,...
Collapse
|
28
|
Abstract
C–H Azidation is an increasingly important tool for bioconjugation, materials chemistry, and the synthesis of nitrogen-containing natural products. While several approaches have been developed, these often require exotic and energetic...
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| |
Collapse
|
29
|
Ye Z, Lei Z, Ye X, Zhou L, Wang Y, Yuan Z, Gao F, Britton R. Decatungstate Catalyzed Synthesis of Trifluoromethylthioesters from Aldehydes via a Radical Process. J Org Chem 2021; 87:765-775. [PMID: 34882428 DOI: 10.1021/acs.joc.1c02244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a mild and general method for the trifluoromethylthiolation of aldehydes using N-trifluoromethylthiosaccharin as the CF3S radical source and sodium decatungstate (NaDT) as the photocatalyst. This reaction proceeds via hydrogen atom abstraction by photoactivated DT and features good functional groups and substrate tolerance. Generally, electron-rich aldehydes demonstrate better reactivity than electron-deficient ones and good selectivity is observed for the trifluoromethylthiolation of aldehydic C-H bonds over tertiary and benzylic C-H bonds. Preliminary mechanistic studies have shown that a free radical process is involved.
Collapse
Affiliation(s)
- Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiaodong Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
30
|
Visible-light-mediated catalyst-free synthesis of unnatural α-amino acids and peptide macrocycles. Nat Commun 2021; 12:6873. [PMID: 34824205 PMCID: PMC8617070 DOI: 10.1038/s41467-021-27086-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023] Open
Abstract
The visible light induced, photocatalysts or photoabsorbing EDA complexes mediated cleavage of pyridinium C-N bond were reported in the past years. Here, we report an ionic compound promote homolytic cleavage of pyridinium C-N bond by exploiting the photonic energy from visible light. This finding is successfully applied in deaminative hydroalkylation of a series of alkenes including naturally occurring dehydroalanine, which provides an efficient way to prepare β-alkyl substituted unnatural amino acids under mild and photocatalyst-free conditions. Importantly, by using this protocol, the deaminative cyclization of peptide backbone N-terminals is realized. Furthermore, the use of Et3N or PPh3 as reductants and H2O as hydrogen atom source is a practical advantage. We anticipate that our protocol will be useful in peptide synthesis and modern peptide drug discovery.
Collapse
|
31
|
Chen J, Gao B, Feng X, Meng W, Du H. Relay Catalysis by Achiral Borane and Chiral Phosphoric Acid in the Metal-Free Asymmetric Hydrogenation of Chromones. Org Lett 2021; 23:8565-8569. [PMID: 34669401 DOI: 10.1021/acs.orglett.1c03286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy of relay catalysis by achiral borane and chiral phosphoric acid was successfully developed for the asymmetric hydrogenation of chromones, giving the desired products in high yields with up to 95% ee. Achiral borane and chiral phosphoric acid are highly compatible in this reaction. The achiral borane acts as a Lewis acid for the first-step hydrogenation, and the chiral phosphoric acid acts as an effective chiral proton shuttle to control the enantioselectivity.
Collapse
Affiliation(s)
- Jingjing Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 443] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
33
|
Shen Y, Dai ZY, Zhang C, Wang PS. Palladium-Catalyzed Allylic Alkylation via Photocatalytic Nucleophile Generation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Yao Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Chen Y, Ye X, He F, Yang X. Asymmetric synthesis of oxazolines bearing α-stereocenters through radical addition–enantioselective protonation enabled by cooperative catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00970b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient radical conjugate addition/enantioselective protonation process was developed for the asymmetric synthesis of chiral oxazolines bearing an α-stereocenter through cooperative photoredox catalysis and asymmetric organocatalysis.
Collapse
Affiliation(s)
- Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueqian Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|