1
|
Wang ZB, Tian YL, Chai Y, Wang XC, Quan ZJ. Cu/Ag-Mediated Three-Component Synthesis of Dibenzophosphole under Mild Conditions. Org Lett 2025; 27:3242-3248. [PMID: 40134369 DOI: 10.1021/acs.orglett.5c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
We report a one-pot, three-component synthesis of dibenzophosphole under mild conditions, facilitated by a copper-silver bimetallic system. This method employs readily available cyclic diaryliodonium salts as arylation reagents and sodium phosphaethynolate (NaOCP) as a phosphorus source, eliminating the need for lithium reagents and energy-intensive chlorophosphines. The resulting dibenzophosphole derivatives exhibit strong fluorescence, highlighting their potential as fluorescent materials.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Ya-Ling Tian
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Yao Chai
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
2
|
Zhang P, Wang Y, Deng Z, Gao J. Synthetic versatility: the C-P bond odyssey. Org Biomol Chem 2025; 23:546-578. [PMID: 39569945 DOI: 10.1039/d4ob01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
C-P bond formation reactions have garnered significant attention due to the widespread presence of organophosphorus compounds in pharmaceuticals, phosphine-containing ligands, pesticides, and materials science. Consequently, various efficient methodologies have been established in recent decades for constructing C-P bonds. This review article traces the historical evolution of C-P bond research and explores the prospects of C-P bond formation. It contrasts biotechnological approaches with chemical synthesis, emphasizing the critical importance of precision and innovation in developing novel C-P structures. A forward-looking perspective is provided on the role of computational tools and machine learning in optimizing C-P bond synthesis and discovering new compounds. The article explores prospective avenues for reactions that form C-P bonds and advocates for enhanced interdisciplinary collaboration to propel scientific and technological advancements.
Collapse
Affiliation(s)
- Peng Zhang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinan Wang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Gou XY, Oliveira JCA, Chen S, Homölle SL, Trienes S, von Münchow T, Zhang BS, Ackermann L. Ruthenaelectro-catalyzed C-H phosphorylation: ortho to para position-selectivity switch. Chem Sci 2025; 16:824-833. [PMID: 39650220 PMCID: PMC11619359 DOI: 10.1039/d4sc06219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The position-selective C-H bond activation of arenes has long been a challenging topic. Herein, we report an expedient ruthenium-electrocatalyzed site-selective ortho-C-H phosphorylation of arenes driven by electrochemical hydrogen evolution reaction (HER), avoiding stoichiometric amounts of chemical redox-waste products. This strategy paved the way to achieve unprecedented ruthenaelectro-catalyzed para-C-H phosphorylation with excellent levels of site-selectivity. This electrocatalytic approach was characterized by an ample substrate scope with a broad range of arenes containing N-heterocycles, as well as several aryl/alkylphosphine oxides were well tolerated. Moreover, late-stage C-H phosphorylation of medicinal relevant drugs could also be achieved. DFT mechanistic studies provided support for an unusual ruthenium(iii/iv/ii) regime for the ortho-C-H phosphorylation.
Collapse
Affiliation(s)
- Xue-Ya Gou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - João C A Oliveira
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Shan Chen
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Bo-Sheng Zhang
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
4
|
Wang M, Gong Y, Shi Y, Zhao Q, Zhao XJ, Li G, He Y. A Multicomponent [2+2+1] Cascade Cyclization to Synthesize Thiazol-2(3 H)-one. J Org Chem 2024; 89:17778-17788. [PMID: 39509546 DOI: 10.1021/acs.joc.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A multicomponent [2+2+1] tandem cyclization of alkynones with amines and water using potassium thiocyanate as electrolyte and raw material to access thiazol-2(3H)-ones has been developed. This transformation proceeded smoothly via electrocatalytic oxidative C-H bond thiolation, and nucleophilic cascade cyclization to build the (C-S/C-N) bonds to construct the C-O bond. The reaction avoided using transition metal catalysts or oxidation reagents, making it more sustainable and renewable.
Collapse
Affiliation(s)
- Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yuchen Gong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yaolian Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Qihai Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
5
|
Dan JH, Huang R, Wang J, Cheng CR. Copper-Catalyzed P-H Bond Functionalization to Construct Biaryl Phosphafluorene Oxides. J Org Chem 2024; 89:10639-10643. [PMID: 38992858 DOI: 10.1021/acs.joc.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
In this study, in the presence of a certain amount of cuprous chloride catalyst and the synergistic action of ligand and base, the P-H bond activation of secondary biarylphosphine oxides and the attack on the β-site of orthoaryl groups were investigated. Phosphafluorene oxide was synthesized by C-H bond activation and an intramolecular dehydrogenation coupling reaction to construct a C-P bond. Subsequently, we conducted a control experiment and made reasonable speculations about its mechanism. In addition, the use of phosphafluorene as a ligand in some synthetic catalytic reactions has shown excellent results, demonstrating its excellent catalytic properties.
Collapse
Affiliation(s)
- Jia-Huan Dan
- School of Chemical Engineering, Sichuan University of Science and Technology, No.180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China
| | - Rui Huang
- School of Chemical Engineering, Sichuan University of Science and Technology, No.180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China
| | - Juan Wang
- School of Chemical Engineering, Sichuan University of Science and Technology, No.180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China
| | - Chun-Ru Cheng
- School of Chemical Engineering, Sichuan University of Science and Technology, No.180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China
| |
Collapse
|
6
|
Thakur D, Sushmita, Meena SA, Verma AK. Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials. CHEM REC 2024; 24:e202400058. [PMID: 39136671 DOI: 10.1002/tcr.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Indexed: 08/28/2024]
Abstract
Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.
Collapse
Affiliation(s)
| | - Sushmita
- Netaji Subhas University of Technology, Delhi, 110078
| | | | | |
Collapse
|
7
|
Mitsudo K, Osaki A, Inoue H, Sato E, Shida N, Atobe M, Suga S. Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor. Beilstein J Org Chem 2024; 20:1560-1571. [PMID: 39015618 PMCID: PMC11250234 DOI: 10.3762/bjoc.20.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
An electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines using a proton-exchange membrane (PEM) reactor was developed. Cyanoarenes were then reduced to the corresponding benzylamines at room temperature in the presence of ethyl phosphate. The reduction of nitroarenes proceeded at room temperature, and a variety of anilines were obtained. The quinoline reduction was efficiently promoted by adding a catalytic amount of p-toluenesulfonic acid (PTSA) or pyridinium p-toluenesulfonate (PPTS). Pyridine was also reduced to piperidine in the presence of PTSA.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Osaki
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Haruka Inoue
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Naoki Shida
- Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mahito Atobe
- Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Zhuang H, Wan P, Miao C, Yang Y, Liang S, Han F. Heteropolyacid-Catalyzed Phosphorylation of Secondary Aromatic Alcohols with H-Phosphine Oxides in DMC: A Simple Protocol for C-P Bond Formation. J Org Chem 2024; 89:2397-2407. [PMID: 38275252 DOI: 10.1021/acs.joc.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We successfully achieved the phosphorylation of secondary aromatic alcohols with H-phosphine oxides (less developed system) using phosphotungstic acid as a catalyst in dimethyl carbonate. The system was simple and environmentally friendly and showed better activity than traditional Lewis or Brønsted acids such as FeCl3, p-TsOH·H2O, etc., generating up to a 97% isolated yield. Control experiments indicated that the reaction did not occur through the radical pathway, and ethers and carbocation were the key intermediates in the pathway.
Collapse
Affiliation(s)
- Hongfeng Zhuang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Peng Wan
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chengxia Miao
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Shuyan Liang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Feng Han
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
9
|
Wu SF, Zhang GK, Wang X, He ZJ, Zhang YC, Shi F. Organocatalytic Diastereoselective (4 + 1) Cycloaddition of o-Hydroxyphenyl-Substituted Secondary Phosphine Oxides. J Org Chem 2023; 88:16497-16510. [PMID: 37982674 DOI: 10.1021/acs.joc.3c01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The first organocatalytic diastereoselective (4 + 1) cycloaddition of o-hydroxyphenyl-substituted secondary phosphine oxides (SPOs) has been established, which makes use of o-hydroxyphenyl substituted SPOs as suitable four-atom phosphorus-containing 1,4-dinucleophiles and 3-indolylformaldehydes as competent 1,1-dielectrophiles under Bro̷nsted acid catalysis. The reaction mechanism was suggested to involve the formation of 3-indolylmethanol intermediates and vinyliminium intermediates, which played an important role in controlling the reactivity and diastereoselectivity of the (4 + 1) cycloaddition under Bro̷nsted acid catalysis. By this approach, a series of benzo oxaphospholes bearing P- and C-stereocenters were synthesized in moderate to good yields (50%-95% yields) with excellent diastereoselectivities (all >95:5 dr). This reaction not only represents the first organocatalytic diastereoselective (4 + 1) cycloaddition of o-hydroxyphenyl-substituted SPOs but also provides an efficient and diastereoselective method for the construction of phosphorus-containing benzo five-membered heterocyclic skeletons bearing both P-stereocenter and C-stereocenter.
Collapse
Affiliation(s)
- Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guo-Ke Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhuo-Jing He
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Nishimura K, Xu S, Nishii Y, Hirano K. One-Step Synthesis of Benzophosphole Derivatives from Arylalkynes by Phosphenium-Dication-Mediated Sequential C-P/C-C Bond Forming Reaction. Org Lett 2023; 25:1503-1508. [PMID: 36820626 DOI: 10.1021/acs.orglett.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A metal-free, phosphenium-dication-mediated sequential C-P and C-C bond forming reaction has been developed. This protocol can provide concise access to the (di)benzophosphole derivatives in one synthetic operation from the readily available and simple arylalkynes and phosphinic acids. Application to the multiple cyclization reaction and the fully intermolecular three-component-coupling-type reaction are also described.
Collapse
Affiliation(s)
- Kazutoshi Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shibo Xu
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Zhang H, Liang S, Wei D, Xu K, Zeng C. Electrocatalytic Generation of Acyl Radicals and Their Applications. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haonan Zhang
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Sen Liang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University 100048 Beijing China
| | - Dengchao Wei
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Kun Xu
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Chengchu Zeng
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| |
Collapse
|
12
|
Mitsudo K, Inoue H, Niki Y, Sato E, Suga S. Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility. Beilstein J Org Chem 2022; 18:1055-1061. [PMID: 36105727 PMCID: PMC9443409 DOI: 10.3762/bjoc.18.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Electrochemical hydrogenation of enones using a proton-exchange membrane reactor is described. The reduction of enones proceeded smoothly under mild conditions to afford ketones or alcohols. The reaction occurred chemoselectively with the use of different cathode catalysts (Pd/C or Ir/C).
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Haruka Inoue
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Niki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Yang J, Sun X, Yan K, Sun H, Sun S, Jia X, Zhang F, Wen J. Electrochemical Oxidation‐Induced Oxyphosphorylation of Alkenes and Alkynes with Water via Hydrogen Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Xue Sun
- Qufu Normal University CHINA
| | | | | | | | | | | | | |
Collapse
|
14
|
Electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Nat Commun 2022; 13:3496. [PMID: 35715392 PMCID: PMC9206016 DOI: 10.1038/s41467-022-31178-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023] Open
Abstract
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C−H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C−H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C−H functionalization of unsymmetric metallocenes. Metallocene-based phosphines are compounds with potential use in catalysis. Here, the authors report the electrochemical regioselective functionalization of group 8 metallocenes with phosphine oxides; over 60 examples of phosphorylated (benzo)ferrocenes and ruthenocenes can be accessed via this method without the need for a preinstalled directing group.
Collapse
|
15
|
Wang J, Bai PB, Yang SD. Palladium-catalyzed relay C–H functionalization to construct novel hybrid-arylcyclophosphorus ligand precursors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Zhang S, Xu G, Yan H, Wu Q, Meng J, Duan J, Guo K. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
18
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angew Chem Int Ed Engl 2022; 61:e202107811. [PMID: 34478188 PMCID: PMC9303540 DOI: 10.1002/anie.202107811] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.
Collapse
Affiliation(s)
- Shangze Wu
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Jaspreet Kaur
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Tobias A. Karl
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Xianhai Tian
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
19
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shangze Wu
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Jaspreet Kaur
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Tobias A. Karl
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Xianhai Tian
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
20
|
Li C, Huang H, Liu F, Yuan C, Chen S, Hua Y, Ding H, Song XR, Xiao Q. Synthesis of (Thio)Furan-Fused Phospholes via Phosphonation Cyclization and a Base-Promoted Phospha-Friedel-Crafts Reaction. J Org Chem 2022; 87:2632-2639. [PMID: 35029389 DOI: 10.1021/acs.joc.1c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we developed a novel strategy for synthesizing ladder (thio)furan-fused phospholes via intermolecular phosphonation cyclization and a base-promoted phospha-Friedel-Crafts reaction under mild conditions. The starting substrates are readily available phosphinic acids and easy-to-handle alkynes. The details of the reaction mechanism were further rationalized using theoretical calculations. This protocol can be widely applied to synthesize furan- and thiofuran-fused phospholes as well as the corresponding large π-extended derivatives, which are of great interest in the domain of organic functional materials.
Collapse
Affiliation(s)
- Chenchen Li
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Haiyang Huang
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Fen Liu
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Chengxiong Yuan
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Siyu Chen
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuhui Hua
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Haixin Ding
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
21
|
Maia da Silva Santos B, Dos Santos Dupim M, Paula de Souza C, Messias Cardozo T, Gadini Finelli F. DABCO-promoted photocatalytic C-H functionalization of aldehydes. Beilstein J Org Chem 2022; 17:2959-2967. [PMID: 35003372 PMCID: PMC8712972 DOI: 10.3762/bjoc.17.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Herein we present a direct application of DABCO, an inexpensive and broadly accessible organic base, as a hydrogen atom transfer (HAT) abstractor in a photocatalytic strategy for aldehyde C–H activation. The acyl radicals generated in this step were arylated with aryl bromides through a well stablished nickel cross-coupling methodology, leading to a variety of interesting aryl ketones in good yields. We also performed computational calculations to shine light in the HAT step energetics and determined an optimized geometry for the transition state, showing that the hydrogen atom transfer between aldehydes and DABCO is a mildly endergonic, yet sufficiently fast step. The same calculations were performed with quinuclidine, for comparison of both catalysts and the differences are discussed.
Collapse
Affiliation(s)
- Bruno Maia da Silva Santos
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Mariana Dos Santos Dupim
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Cauê Paula de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Fernanda Gadini Finelli
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| |
Collapse
|
22
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Electrochemical Oxidative C H Phosphonylation of thiazole derivatives in ambient conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Hore S, Singh RP. Phosphorylation of arenes, heteroarenes, alkenes, carbonyls and imines by dehydrogenative cross-coupling of P(O)-H and P(R)-H. Org Biomol Chem 2021; 20:498-537. [PMID: 34904988 DOI: 10.1039/d1ob02003j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organophosphorous compounds have recently emerged as a powerful class of compounds with widespread applications, such as in bioactive natural products, pharmaceuticals, agrochemicals and organic materials, and as ligands in catalysis. The preparation of these compounds requires synthetic techniques with novel catalytic systems varying from transition metal, photo- and electrochemical catalysis to transformations without metal catalysts. Over the past few decades, the addition of P-H bonds to alkenes, alkynes, arenes, heteroarenes and other unsaturated substrates in hydrophosphination and other related reactions via the above-mentioned catalytic processes has emerged as an atom economical approach to obtain organophosphorus compounds. In most of the catalytic cycles, the P-H bond is cleaved to yield a phosphorus-based radical, which adds onto the unsaturated substrate followed by reduction of the corresponding radical yielding the product.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
25
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|