1
|
Zhou B, Huang Z, Gao Z, Hu Y. Formal 1,1-Hydrocyanation Reaction of Alkynyl Halides with Isocyanides Enabled by Dual Nickel/Base Catalysis Relay. Org Lett 2024; 26:10511-10516. [PMID: 39630112 DOI: 10.1021/acs.orglett.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein describe a formal 1,1-hydrocyanation reaction of alkynyl halides with isocyanides enabled by a dual nickel/base catalysis relay. tert-Butyl isocyanide serves as a "HCN" precursor that is introduced to the α-position of alkynyl halides, and the halogen atom is moved to the β-position. As a result, a series of (Z)-3-bromo/iodo acrylonitrile derivatives could be obtained in moderate yields. Mechanistic experiments were carried out, and the collective data could support our proposal of the mechanism details.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Jiao M, Long J, Chen J, Yang H, Wang T, Fang X. Nickel-Catalyzed Regio- and Enantioselective Migratory Hydrocyanation of Internal Alkenes: Expanding the Scope to α,ω-Diaryl Internal Alkenes. Angew Chem Int Ed Engl 2024; 63:e202402390. [PMID: 38523071 DOI: 10.1002/anie.202402390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Metal-hydride-catalyzed migratory functionalization of alkenes witnessed extensive development in the past few years. However, the asymmetric version of this reaction has remained largely underdeveloped owing to the difficulty in simultaneous control of both regio- and stereoselectivity. In addition, exploring the wider alkene substrate scope to enable more synthetically valuable applications represents another challenge in this field. In this context, a nickel-catalyzed asymmetric hydrocyanation of internal alkenes involving a chain-walking process is demonstrated. The reaction exhibits excellent regio- and enantioselectivity, proceeds under mild reaction conditions, and delivers benzylic nitriles in high yields. Even α,ω-diaryl internal alkenes, which are known to be one of the most challenging substrates of this type, could be successfully converted to the desired products with good regio- and stereoselectivity by modifying the electronic and steric effects. Theoretical calculations suggest that the η3-benzyl coordination mode and the aryl substituent (3,5-(OMe)2C6H3) on the diphosphite ligand are both key factors in regulating regio- and enantioselectivity.
Collapse
Affiliation(s)
- Mingdong Jiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jinguo Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jianxi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Ting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
3
|
Arai S, Nakazawa K, Yang XF, Nakajima M, Harada S, Nishida A. Nickel-catalysed regio- and stereoselective hydrocyanation of alkynoates and its mechanistic insights proposed by DFT calculations. Org Biomol Chem 2024; 22:3606-3610. [PMID: 38629974 DOI: 10.1039/d4ob00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We have developed a nickel-catalysed regio- and stereoselective hydrocyanation of alkynoates that gives syn-β-cyanoalkenes. DFT calculations suggest that a favored transition state promotes Cα-H bond formation for determining regio- and stereoselectivity of the products.
Collapse
Affiliation(s)
- Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Koichi Nakazawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Xiao-Fei Yang
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinji Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
4
|
Liu A, Qi H, Chi D, Chen S. Construction of Conjugated 1,3-Enynes via Pd-Catalyzed Cascade Alkynylation of Aryl Phenol-Tethered Alkynes with Alkynyl Bromides. Org Lett 2023; 25:6087-6092. [PMID: 37552605 DOI: 10.1021/acs.orglett.3c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An efficient Pd-catalyzed cascade alkynylation of aryl phenol-tethered alkynes with alkynyl bromides is described. This protocol could provide various conjugated 1,3-enynes possessing a polysubstituted spirocyclohexadienone, as well as an all-carbon tetrasubstituted alkene moiety. The products could also undergo ring-expansion and cyclization transformations under different conditions to convert to diverse fused cyclic scaffolds.
Collapse
Affiliation(s)
- Anjia Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Pati BV, Ghosh A, Yadav K, Banjare SK, Pandey S, Lourderaj U, Ravikumar PC. Palladium-catalyzed selective C-C bond cleavage and stereoselective alkenylation between cyclopropanol and 1,3-diyne: one-step synthesis of diverse conjugated enynes. Chem Sci 2022; 13:2692-2700. [PMID: 35340856 PMCID: PMC8890101 DOI: 10.1039/d1sc04780a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The stereoselective synthesis of 1,3-enynes from 1,3-diynes is demonstrated by palladium-catalyzed selective C–C bond cleavage of cyclopropanol. Exclusive formation of mono-alkenylated adducts was achieved by eliminating the possibility of di-functionalization with high stereoselectivity. Indeed, this protocol worked very well with electronically and sterically diverse substrates. Several studies, including deuterium labeling experiments and intermolecular competitive experiments, were carried out to understand the mechanistic details. The atomic-level mechanism followed in the catalytic process was also validated using DFT calculations, and the rate-controlling states in the catalytic cycle were identified. Furthermore, preliminary mechanistic investigations with radical scavengers revealed the non-involvement of the radical pathway in this transformation. Palladium-catalyzed tandem activation and functionalization of readily accessible cyclopropanols have been demonstrated to access valuable conjugated enynes from 1,3-diynes with high stereo-selectivity.![]()
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Asit Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Komal Yadav
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Upakarasamy Lourderaj
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Jatani Khurda 752050 Odisha India
| |
Collapse
|
6
|
Abstract
Metal-catalyzed hydrofunctionalization reactions of alkynes, i.e., the addition of Y–H units (Y = heteroatom or carbon) across the carbon–carbon triple bond, have attracted enormous attention for decades since they allow the straightforward and atom-economic access to a wide variety of functionalized olefins and, in its intramolecular version, to relevant heterocyclic and carbocyclic compounds. Despite conjugated 1,3-diynes being considered key building blocks in synthetic organic chemistry, this particular class of alkynes has been much less employed in hydrofunctionalization reactions when compared to terminal or internal monoynes. The presence of two C≡C bonds in conjugated 1,3-diynes adds to the classical regio- and stereocontrol issues associated with the alkyne hydrofunctionalization processes’ other problems, such as the possibility to undergo 1,2-, 3,4-, or 1,4-monoadditions as well as double addition reactions, thus increasing the number of potential products that can be formed. In this review article, metal-catalyzed hydrofunctionalization reactions of these challenging substrates are comprehensively discussed.
Collapse
|
7
|
Hajiloo Shayegan M, Li ZY, Cui X. Ligand-Controlled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry 2021; 28:e202103402. [PMID: 34693580 DOI: 10.1002/chem.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Ligand-controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo- and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre-catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2-semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3-semireduction, producing (E)-enamide derivatives.
Collapse
Affiliation(s)
| | - Zhong-Yuan Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
8
|
Sun F, Wang T, Cheng GJ, Fang X. Enantioselective Nickel-Catalyzed Hydrocyanative Desymmetrization of Norbornene Derivatives. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Wang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|