1
|
Lucas C, Fung E, Nodwell M, Silverman S, Singh B, Campeau LC, Britton R. A flexible and scalable synthesis of 4'-thionucleosides. Chem Sci 2024; 16:318-322. [PMID: 39611032 PMCID: PMC11600435 DOI: 10.1039/d4sc05679e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
4'-Thionucleosides (thNAs) are synthetic nucleoside analogues that have attracted attention as leads for drug discovery in oncology and virology. Here we report a de novo thNA synthesis that relies on a scalable α-fluorination and aldol reaction of α-heteroaryl acetaldehydes followed by a streamlined process involving carbonyl reduction, mesylate formation and a double displacement reaction using NaSH. We demonstrate the multigram preparation of 4'-thio-5-methyluridine and highlight the production of purine and pyrimidine thNAs as well as C2'-modified thNAs.
Collapse
Affiliation(s)
- Callum Lucas
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Ethan Fung
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Steven Silverman
- Department of Process Research & Development, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Bara Singh
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | | | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
2
|
Westarp S, Benckendorff CMM, Motter J, Röhrs V, Sanghvi YS, Neubauer P, Kurreck J, Kurreck A, Miller GJ. Biocatalytic Nucleobase Diversification of 4'-Thionucleosides and Application of Derived 5-Ethynyl-4'-thiouridine for RNA Synthesis Detection. Angew Chem Int Ed Engl 2024; 63:e202405040. [PMID: 38785103 DOI: 10.1002/anie.202405040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Nucleoside and nucleotide analogues have proven to be transformative in the treatment of viral infections and cancer. One branch of structural modification to deliver new nucleoside analogue classes explores replacement of canonical ribose oxygen with a sulfur atom. Whilst biological activity of such analogues has been shown in some cases, widespread exploration of this compound class is hitherto hampered by the lack of a straightforward and universal nucleobase diversification strategy. Herein, we present a synergistic platform enabling both biocatalytic nucleobase diversification from 4'-thiouridine in a one-pot process, and chemical functionalization to access new entities. This methodology delivers entry across pyrimidine and purine 4'-thionucleosides, paving a way for wider synthetic and biological exploration. We exemplify our approach by enzymatic synthesis of 5-iodo-4'-thiouridine on multi-milligram scale and from here switch to complete chemical synthesis of a novel nucleoside analogue probe, 5-ethynyl-4'-thiouridine. Finally, we demonstrate the utility of this probe to monitor RNA synthesis in proliferating HeLa cells, validating its capability as a new metabolic RNA labelling tool.
Collapse
Affiliation(s)
- Sarah Westarp
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonas Motter
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California, 92024, USA
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Gavin J Miller
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
3
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
4
|
Benckendorff CMM, Sanghvi YS, Miller GJ. Preparation of a 4'-Thiouridine Building-Block for Solid-Phase Oligonucleotide Synthesis. Curr Protoc 2023; 3:e878. [PMID: 37747330 PMCID: PMC10946921 DOI: 10.1002/cpz1.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Starting from a commercially available thioether, we report a nine-step synthesis of a 4'-thiouridine phosphoramidite building-block. We install the uracil nucleobase using Pummerer-type glycosylation of a sulfoxide intermediate followed by a series of protecting group manipulations to deliver the desired phosphite. Notably, we introduce a 3',5'-O-di-tert-butylsilylene protecting group within a 4'-thiosugar framework, harnessing this to ensure regiospecific installation of the 2'-O-silyl protecting group. We envisage this methodology will be generally applicable to other 4'-thionucleosides and duly support the exploration of their inclusion within related nucleic acid syntheses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (2R,3S,4R)-2,3-O-Isopopropylidene-5-O-tert-butyldiphenylsilyl-1-(4-sulfinyl)cyclopentane: Sulfoxidation Basic Protocol 2: 2',3'-O-Isopropylidene-5'-O-tert-butyldiphenylsilyl-4'-thiouridine: Pummerer glycosylation Basic Protocol 3: 4'-Thiouridine: Deprotection Basic Protocol 4: 2'-O-tert-Butyldimethylsilyl-3',5'-di-tert-butylsiloxy-4'-thiouridine: 2',3',5'-O-silylation Basic Protocol 5: 2'-O-tert-Butyldimethylsilyl-4'-thiouridine: Selective 3'-5'-desilylation Basic Protocol 6: 2'-O-tert-Butyldimethylsilyl-5'-O-dimethoxytrityl-4'-thiouridine: 5'-O-dimethoxytritylation Basic Protocol 7: 2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethoxy)(N,N-diisopropylamino)phosphino]-5'-O-dimethoxytrityl-4'-thiouridine: 3'-O-phosphitylation.
Collapse
Affiliation(s)
- Caecilie M. M. Benckendorff
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| | | | - Gavin J. Miller
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| |
Collapse
|
5
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Kurose Y, Okamoto K, Okada Y, Kitano Y, Chiba K. Direct Anodic N‐a Hydroxylation: Accessing Versatile Intermediates for Azanucleoside Derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuma Kurose
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science JAPAN
| | - Kazuhiro Okamoto
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science JAPAN
| | - Yohei Okada
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science JAPAN
| | - Yoshikazu Kitano
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science JAPAN
| | - Kazuhiro Chiba
- Tokyo University of Agriculture and Technology Applied Biological Science 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo JAPAN
| |
Collapse
|