1
|
Kang J, Moon S, Rhee YH. Pd-Catalyzed Counter-Steric Site- and Chemoselective Glycosylation: Total Synthesis of Fridamycin A and Himalomycin B. J Am Chem Soc 2025; 147:14432-14441. [PMID: 40239062 DOI: 10.1021/jacs.5c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Here, we report a de novo synthetic strategy toward fridamycin-type glycoside natural products. A salient feature of the method is highlighted by the Pd-catalyzed asymmetric hydroalkoxylation of fridamycin A methyl ester with alkoxyallene, which enables site- and chemoselective introduction of 2,3,6-trideoxyglycosysides to various hydroxyl positions in a highly controlled manner. A unique advantage of this method is demonstrated by the total synthesis of himalomycin B and a C4'-epi derivative of the proposed structure of amicenomycin B.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seungsoo Moon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Song D, Koo B, Kang H, Seo K, Kim C. Chiral Acetal-Based Stereo-Controlled Degradable Polymer Synthesis. Chemistry 2024; 30:e202402064. [PMID: 38923725 DOI: 10.1002/chem.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The precise synthesis of chiral polymers remains a significant challenge in polymer chemistry, particularly for applications in advanced biomedical and electronic materials. The development of degradable polymers is important for eco-friendly and advanced materials. Here, we introduce a stereo-controlled degradable polymer via cascade enyne metathesis polymerization and enantioselective acetal synthesis through Pd-catalyzed asymmetric hydroamination. This approach allows for the creation of chiral acetal-based polymers with controlled stereochemistry and degradability, highlighting their potential for use in drug delivery and electronic applications. This concept article reviews the background, development, and potential applications of these stereo-controlled degradable polymers.
Collapse
Affiliation(s)
- Dayong Song
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Kyeongdeok Seo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Choeljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
3
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Dey R, Jang DJ, Rhee YH. Formal Synthesis of (+)-Sinefungin by Way of Sequential Asymmetric Metal Catalysis. Org Lett 2024; 26:3957-3960. [PMID: 38683026 DOI: 10.1021/acs.orglett.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Here, we report a de novo approach toward (+)-sinefungin, a potent inhibitor of the physiological methyl transfer process. A key feature is represented by the sequential metal catalysis combining Pd-catalyzed hydroalkoxylation and ring-rearrangement metathesis. The unique advantage of the method is highlighted by the unprecedented complete control of the C6 stereocenter.
Collapse
Affiliation(s)
- Raghunath Dey
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, Kyungbuk 37673, Republic of Korea
| | - Dong-Jin Jang
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, Kyungbuk 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
5
|
Lee S, Rhee YH. Total Synthesis of the Purported Structure of Branched Resin Glycosides Merremoside G and H 2. Org Lett 2024; 26:602-606. [PMID: 38206072 DOI: 10.1021/acs.orglett.3c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The first total synthesis of the purported structure of branched resin glycosides merremoside G and H2 is accomplished. A signature step is represented by the sequential transition-metal-catalyzed coupling of stable trisaccharide homoallylic alcohol and monosaccharide alkoxyallene to afford the pentasaccharide skeleton. This de novo strategy is conducted under mild conditions with no need of preactivation. In addition, it allows for efficient preparation of the target compounds in combination with late-stage functionalization.
Collapse
Affiliation(s)
- Sukhyun Lee
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk 37673, Republic of Korea
| |
Collapse
|
6
|
Kang J, Rhee YH. Synthesis of the Tetrasaccharide Glycone Part of Tetrocarcin A. J Org Chem 2023. [PMID: 36812358 DOI: 10.1021/acs.joc.2c02832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A de novo synthesis of the tetrasaccharide fragment of tetrocarcin A is described. The key feature of this approach is highlighted by the regio- and diastereoselective Pd-catalyzed hydroalkoxylation of ene-alkoxyallenes with an unprotected l-digitoxose glycoside. The subsequent reaction with digitoxal in combination with chemoselective hydrogenation generated the target molecule.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk Republic of Korea 37673
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk Republic of Korea 37673
| |
Collapse
|
7
|
Barpuzary B, Kim M, Rhee YH. Synthetic Study toward Saccharomicin Based upon Asymmetric Metal Catalysis. Org Lett 2021; 23:5969-5972. [PMID: 34292756 DOI: 10.1021/acs.orglett.1c02060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a de novo metal-catalyzed approach toward the stereoselective glycosidic bond formation in saccharomicin. The signature step is highlighted by the Pd-catalyzed asymmetric coupling of ene-alkoxyallenes and highly functionalized alcohol substrates. The reaction showed high chemo-, regio-, and ligand-driven diastereoselectivity. In combination with the ring-closing metathesis and late-stage functionalization, this method led to highly efficient synthesis of saccharosamine-rhamnose and rhamnose-fucose fragments.
Collapse
Affiliation(s)
- Bhawna Barpuzary
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Mijin Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| |
Collapse
|