1
|
Morvan J, Tang B, Ryabchuk P, Renders E, Last S, Van Eynde L, Bartkowiak K, Buijnsters PJJA, Jones AX, Carvalho MA, Diccianni JB. Enabling electrochemical, decarboxylative C(sp 2)-C(sp 3) cross-coupling for parallel medicinal chemistry. Eur J Med Chem 2025; 291:117583. [PMID: 40220678 DOI: 10.1016/j.ejmech.2025.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Herein we report the development of an automated protocol for coupling aliphatic carboxylic acids and aryl halides under mild, electrochemical conditions. Carboxylic acids are one of the largest pools of commercially available building blocks utilized in parallel medicinal chemistry to expand structure-activity relationships. However, their usage in decarboxylative cross-coupling reactions to forge C(sp2)-C(sp3) bonds is low due to challenges associated with direct decarboxylation. Redox-active esters (RAE) are commonly employed to increase the reactivity of carboxylic acids for decarboxylative cross-coupling reactions. Previously, coupling reagent byproducts from in situ generated RAEs proved detrimental to transition metal catalysis. We have developed a purification-free protocol for activating carboxylic acids as N-hydroxyphthalimide (NHPI) esters, which are employed in electrochemical decarboxylative cross-coupling in a high-throughput, automated fashion. This automated workflow enables the preparation of compound libraries including PROTACs. By enabling the pool of commercial aliphatic carboxylic acids to be rapidly incorporated into drug-like molecules, this protocol can potentially impact how C(sp2)-C(sp3) cross-coupling reactions are performed in drug discovery campaigns.
Collapse
Affiliation(s)
- Jennifer Morvan
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Bingqing Tang
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Pavel Ryabchuk
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Evelien Renders
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Stefaan Last
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Lars Van Eynde
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Karolina Bartkowiak
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Peter J J A Buijnsters
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium
| | - Alexander X Jones
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium.
| | - Mary-Ambre Carvalho
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, Beerse, 2340 Belgium.
| | - Justin B Diccianni
- Global Discovery Chemistry, Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, United States.
| |
Collapse
|
2
|
Burton KI, MacMillan DWC. Rapid Access to 3-Substituted Bicyclo[1.1.1]pentanes. Chem 2025; 11:102537. [PMID: 40352464 PMCID: PMC12061040 DOI: 10.1016/j.chempr.2025.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The prevalence of benzene rings in pharmaceutical scaffolds has prompted efforts to identify structural bioisosteres with improved in vivo properties. Notably, bicyclo[1.1.1]pentanes (BCPs)-C(sp3)-enriched, 1,4-disubstituted phenyl bioisosteres-have been leveraged to tune the pharmacokinetic profiles of lead compounds. While 3-arylated BCPs have been widely implemented to confer resistance against oxidative degradation and hydrogen atom transfer (HAT) processes, the analogous 3-alkylated BCPs remain underexplored as bioisosteric "benzylic" C-H motifs. Current methods to install 3-alkylated BCP motifs are heavily reliant on lengthy de novo synthesis and the preparation of reactive [1.1.1]propellane feedstocks, limiting their adoption in drug discovery programs. In this report, we disclose a mild, unified method for the preparation of both alkyl and aryl-substituted BCPs from bench-stable precursors. This method, which proceeds via dual copper-photoredox catalysis, is capable of installing BCP functionalities onto a range of saturated motifs, aryl-containing residues, and medicinally relevant heterocycles.
Collapse
Affiliation(s)
- Katherine I. Burton
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Lead contact
| |
Collapse
|
3
|
Jin J, Yang H, Xiang H, Lu Y, Ye Y. Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP). Top Curr Chem (Cham) 2025; 383:6. [PMID: 39826019 DOI: 10.1007/s41061-025-00490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed. As a novel building block, BCP could be directly involved in a variety of synthetic methods and widely used in the last-stage modification of drugs, attracting much attention from organic chemists and pharmacists. Radical-type cross-coupling reactions involving BCP enable the simultaneous formation of multiple chemical bonds (e.g., C-C, C-N, C-B, C-S, and C-Si) through metal catalysis, photocatalysis, metal-photo synergistic catalysis, and other catalytic systems. Various radical precursors have been explored, facilitating cross-coupling reactions that directly incorporate BCP. This review highlights these state-of-the-art radical couplings of BCP since 2017, organized by reaction components with emphasis on the scope of substrates, reaction mechanisms, and synthetic applications.
Collapse
Affiliation(s)
- Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yue Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Gesmundo NJ, Rago AJ, Young JM, Keess S, Wang Y. At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research. J Org Chem 2024; 89:16070-16092. [PMID: 38442262 DOI: 10.1021/acs.joc.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie's medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie's academic-industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexander J Rago
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jonathon M Young
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sebastian Keess
- Global Medicinal Chemistry, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Ying Wang
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
5
|
Nan H, Cheng B, Zhang D, Wang K, Wang S, Xu B, Zhang S, König B, Zhang G. Direct Diazoarylation of [1.1.1]Propellane with Arenediazonium Salts: A Modular Assembly of Arylated Diazo Bicyclo[1.1.1]pentanes. Org Lett 2024; 26:8424-8429. [PMID: 39311486 DOI: 10.1021/acs.orglett.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A mild and concise diazoarylation of [1.1.1]propellane is described, which provides a modular approach to arylated diazo bicyclopentanes (BCPs). This reaction proceeds smoothly under basic conditions without requiring other additives or catalysts. The substrate scope shows that various electron-withdrawing and electron-donating groups are tolerated, and the subsequent modifications provide a novel avenue for assembling arylamino-BCP analogs.
Collapse
Affiliation(s)
- Hailing Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
6
|
Wu Q, Li X, Ma J, Shi Y, Lv J, Yang D. Arylcyanation of Styrenes by Photoactive Electron Donor-Acceptor Complexes/Copper Catalysis. Org Lett 2024; 26:7949-7955. [PMID: 39259680 DOI: 10.1021/acs.orglett.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
Collapse
Affiliation(s)
- Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, P. R. China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
7
|
Xie KA, Bednarova E, Joe CL, Sherwood TC, Welin ER, Rovis T. A Unified Method for Oxidative and Reductive Decarboxylative Arylation with Orange Light-Driven Ir/Ni Metallaphotoredox Catalysis. J Am Chem Soc 2024; 146:25780-25787. [PMID: 39236338 DOI: 10.1021/jacs.4c08375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Carboxylic acids and their derivatives are powerful building blocks in dual Ir/Ni metallaphotoredox methods of decarboxylative arylation due to their abundance as feedstock compounds. However, the library of accessible carboxylic acids is limited by trends in radical stability, often necessitating the development of specific systems for challenging substrates. Herein, we disclose the application of a new Ir(III) photocatalyst and low-energy orange light Ir/Ni metallaphotoredox system with broad applicability in activating both native carboxylic acids and redox-active esters (RAEs). This method represents the first known example of complementary oxidative and reductive decarboxylative paradigms with broadly similar reaction conditions, unlocking the reactivity for challenging substrates. We further show a wide scope of aryl halide and acid coupling partners in both regimes, with added advantages over blue-light-catalyzed aryl alkylation for photosensitive substrates.
Collapse
Affiliation(s)
- Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Bednarova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric R Welin
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang K, Cheng B, König B, Zhang D, Xu B, Wang S, Zhang G. Photocatalyzed 1,3-Bromodifluoroallylation of [1.1.1]Propellane with α-Trifluoromethylalkenes and KBr Salts. Org Lett 2024; 26:6889-6893. [PMID: 39106520 DOI: 10.1021/acs.orglett.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Herein we unveil a visible-light-driven transition-metal-free 1,3-bromodifluoroallylation of [1.1.1]propellane. This reactivity is harnessed through organophotocatalysis, providing practical synthetic pathways to 1-brominated-3-gem-difluoroallylic bicyclo[1.1.1]pentane derivatives, particularly derived from readily available α-trifluoromethylalkenes and inexpensive KBr salts utilized as precursors for bromine radicals. Mechanistic investigations reveal that bromide anions quench the excited state of the photocatalyst, leading to the formation of bromine radicals, which react in a strain-release radical addition process rather than hydrogen atom abstraction with [1.1.1]propellane.
Collapse
Affiliation(s)
- Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| |
Collapse
|
10
|
Alsharif S, Zhu C, Liu X, Lee SC, Yue H, Rueping M. Nickel-catalyzed C(sp 2)-C(sp 3) coupling via photoactive electron donor-acceptor complexes. Chem Commun (Camb) 2024; 60:5153-5156. [PMID: 38639139 DOI: 10.1039/d4cc00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We have developed a novel Ni-catalyzed reductive cross-coupling reaction of aryl bromides and alkyl iodides via a photoactive electron donor-acceptor (EDA) complex. This photo-induced process enables the efficient construction of C(sp2)-C(sp3) bonds in the absence of an external photocatalyst. Electronically and structurally diverse aryl bromides, as well as secondary and primary alkyl iodides could undergo this transformation smoothly. Natural product derivatives were employed successfully, and UV-vis spectroscopy was utilized to gain mechanistic insight.
Collapse
Affiliation(s)
- Salman Alsharif
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Chen Zhu
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Xiushan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Shao-Chi Lee
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
12
|
Anderson JM, Poole DL, Cook GC, Murphy JA, Measom ND. Organometallic Bridge Diversification of Bicyclo[1.1.1]pentanes. Chemistry 2024; 30:e202304070. [PMID: 38117748 DOI: 10.1002/chem.202304070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Darren L Poole
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - Gemma C Cook
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Nicholas D Measom
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| |
Collapse
|
13
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Laudadio G, Neigenfind P, Péter Á, Rubel CZ, Emmanuel MA, Oderinde MS, Ewing TEH, Palkowitz MD, Sloane JL, Gillman KW, Ridge D, Mandler MD, Bolduc PN, Nicastri MC, Zhang B, Clementson S, Petersen NN, Martín-Gago P, Mykhailiuk P, Engle KM, Baran PS. Nickel-Electrocatalytic Decarboxylative Arylation to Access Quaternary Centers. Angew Chem Int Ed Engl 2024; 63:e202314617. [PMID: 38181042 DOI: 10.1002/anie.202314617] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
There is a pressing need, particularly in the field of drug discovery, for general methods that will enable direct coupling of tertiary alkyl fragments to (hetero)aryl halides. Herein a uniquely powerful and simple set of conditions for achieving this transformation with unparalleled generality and chemoselectivity is disclosed. This new protocol is placed in context with other recently reported methods, applied to simplify the routes of known bioactive building blocks molecules, and scaled up in both batch and flow. The role of pyridine additive as well as the mechanism of this reaction are interrogated through Cyclic Voltammetry studies, titration experiments, control reactions with Ni(0) and Ni(II)-complexes, and ligand optimization data. Those studies indicate that the formation of a BINAPNi(0) is minimized and the formation of an active pyridine-stabilized Ni(I) species is sustained during the reaction. Our preliminary mechanistic studies ruled out the involvement of Ni(0) species in this electrochemical cross-coupling, which is mediated by Ni(I) species via a Ni(I)-Ni(II)-Ni(III)-Ni(I) catalytic cycle.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Philipp Neigenfind
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Áron Péter
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Camille Z Rubel
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Martins S Oderinde
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Jack L Sloane
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Kevin W Gillman
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Daniel Ridge
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Michael D Mandler
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | | | | | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Pablo Martín-Gago
- Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Pavel Mykhailiuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Yang Y, Tsien J, Dykstra R, Chen SJ, Wang JB, Merchant RR, Hughes JME, Peters BK, Gutierrez O, Qin T. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat Chem 2024; 16:285-293. [PMID: 37884667 PMCID: PMC10922318 DOI: 10.1038/s41557-023-01342-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - James B Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Byron K Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Bai Z, Lansbergen B, Ritter T. Bicyclopentylation of Alcohols with Thianthrenium Reagents. J Am Chem Soc 2023; 145:25954-25961. [PMID: 38010346 PMCID: PMC10704608 DOI: 10.1021/jacs.3c10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Herein we present the first method for the synthesis of bicyclo[1.1.1]pentyl (BCP) alkyl ethers from alcohols. The reaction uses BCP-thianthrenium reagents and is catalyzed by a dual copper/photoredox catalyst system. Unlike known alkylations of tertiary alcohols via carbocation intermediates, our Cu-mediated radical process circumvents the labile BCP carbocations. The approach demonstrates a broad tolerance for functional groups when applied to primary, secondary, and even tertiary alcohols. In addition, we highlight the utility of this method in late-stage functionalizations of both natural products and pharmaceuticals as well as in the rapid construction of BCP analogs of known pharmaceuticals that would otherwise be difficult to access.
Collapse
Affiliation(s)
- Zibo Bai
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Beatrice Lansbergen
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Yan H, Liu Y, Feng X, Shi L. Hantzsch Esters Enabled [2π+2σ] Cycloadditions of Bicyclo [1.1.0] butanes and Alkenes under Photo Conditions. Org Lett 2023; 25:8116-8120. [PMID: 37939017 DOI: 10.1021/acs.orglett.3c03222] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hantzsch esters (HEs) are widely recognized as sources of hydride ions (H-) and sacrificial electron donors in their ground state. Here, we report the application of HE as a mediator in [2π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with alkenes under photo conditions. Through this strategy, various substituted bicyclo[2.1.1]hexanes can be efficiently prepared.
Collapse
Affiliation(s)
- Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
| | | | - Xiao Feng
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, China
| |
Collapse
|
18
|
Palkowitz MD, Emmanuel MA, Oderinde MS. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions. Acc Chem Res 2023; 56:2851-2865. [PMID: 37772915 DOI: 10.1021/acs.accounts.3c00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
19
|
Yasukawa T, Håheim KS, Cossy J. Synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes by cross-coupling induced by transition metals - formation of C-C bonds. Org Biomol Chem 2023; 21:7666-7680. [PMID: 37702418 DOI: 10.1039/d3ob01036h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes (BCPs), by forming a C-C bond, can be achieved by cross-coupling reactions using transition metal catalysts. Two main strategies are described to access these 1,3-disubstituted BCPs, either from nucleophilic BCPs or electrophilic BCPs. Mechanisms are included where relevant.
Collapse
Affiliation(s)
- Tomohiro Yasukawa
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| | - Katja S Håheim
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| |
Collapse
|
20
|
Huang W, Keess S, Molander GA. A General and Practical Route to Functionalized Bicyclo[1.1.1]Pentane-Heteroaryls Enabled by Photocatalytic Multicomponent Heteroarylation of [1.1.1]Propellane. Angew Chem Int Ed Engl 2023; 62:e202302223. [PMID: 37059692 PMCID: PMC10247404 DOI: 10.1002/anie.202302223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/16/2023]
Abstract
1-Aryl-substituted bicyclo[1.1.1]pentanes (BCPs) are an important class of BCP derivatives with widespread application in drug development. Most syntheses of these materials require multiple chemical steps via BCP electrophiles or nucleophiles derived from [1.1.1]propellane. Although one-step, multicomponent radical cross-coupling reactions could provide a more sustainable and rapid route to access diverse heteroarylated BCPs, current approaches are limited to tertiary alkyl radicals, leading to a decrease in their practical value. In this study, a conceptually different approach enabled by a radical multicomponent heteroarylation of [1.1.1]propellane to access functionalized heteroarylated BCPs is described. Importantly, this protocol is compatible with primary-, secondary-, and tertiary aliphatic radicals, as well as various fluoroalkyl radical sources, thus enabling rapid library generation of sought-after BCP derivatives for drug development.
Collapse
Affiliation(s)
- Weichen Huang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
21
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
22
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
23
|
Dong W, Keess S, Molander GA. Nickel-Mediated Alkyl-, Acyl-, and Sulfonylcyanation of [1.1.1]Propellane. CHEM CATALYSIS 2023; 3:100608. [PMID: 37840854 PMCID: PMC10572913 DOI: 10.1016/j.checat.2023.100608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The replacement of traditional functional groups with polycyclic scaffolds has been increasingly rewarding in medicinal chemistry programs. Over the decades, 1,3-disubstituted bicyclo[1.1.1]pentanes (BCPs) have demonstrated the potential for being competent bioisosteres for aryl-, alkyl- and alkynyl substructures. Although highly desired, mild and versatile synthetic methods to access synthetically valuable BCP-containing building blocks remain limited. Herein, a versatile way to access bridgehead substituted BCP nitriles, a useful BCP building block, is described, enabled by the unexpected selectivity of nickel in the multi-component radical cyanation. Commodity materials including carboxylic acids, amines, sulfonyl chlorides, and alkyl chlorides are engaged to provide a broad spectrum of substituted BCP nitriles in a single-step, multi-component fashion.
Collapse
Affiliation(s)
- Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
- Lead contact
| |
Collapse
|
24
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
25
|
Zheng Y, Huang W, Dhungana RK, Granados A, Keess S, Makvandi M, Molander GA. Photochemical Intermolecular [3σ + 2σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes. J Am Chem Soc 2022; 144:23685-23690. [PMID: 36523116 PMCID: PMC10413992 DOI: 10.1021/jacs.2c11501] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of synthetic strategies for the preparation of bioisosteric compounds is a demanding undertaking in medicinal chemistry. Numerous strategies have been developed for the synthesis of bicyclo[1.1.1]pentanes (BCPs), bridge-substituted BCPs, and bicyclo[2.1.1]hexanes. However, progress on the synthesis of bicyclo[3.1.1]heptanes, which serve as meta-substituted arene bioisosteres, has not been previously explored. Herein, we disclose the first photoinduced [3σ + 2σ] cycloaddition for the synthesis of trisubstituted bicyclo[3.1.1]heptanes using bicyclo[1.1.0]butanes and cyclopropylamines. This transformation not only uses mild and operationally simple conditions but also provides unique meta-substituted arene bioisosteres. The applicability of this method is showcased by simple derivatization reactions.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weichen Huang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Brewster JT, Randall SD, Kowalski J, Cruz C, Shoemaker R, Tarlton E, Hinklin RJ. A Decarboxylative Cross-Coupling Platform To Access 2-Heteroaryl Azetidines: Building Blocks with Application in Medicinal Chemistry. Org Lett 2022; 24:9123-9129. [DOI: 10.1021/acs.orglett.2c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James T. Brewster
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D. Randall
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John Kowalski
- Drug Metabolism & Pharmacokinetics, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Richard Shoemaker
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Eugene Tarlton
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Ronald J. Hinklin
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
27
|
Zhang Y, Xia S, Shi WX, Lin B, Su XC, Lu W, Wu X, Wang X, Lu X, Yan M, Zhang XJ. Radical C–H Sulfonation of Arenes: Its Applications on Bioactive and DNA-Encoded Molecules. Org Lett 2022; 24:7961-7966. [DOI: 10.1021/acs.orglett.2c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Shengdi Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Bizhen Lin
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xiao-can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| |
Collapse
|
28
|
Rentería-Gómez A, Lee W, Yin S, Davis M, Gogoi AR, Gutierrez O. General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction. ACS Catal 2022; 12:11547-11556. [PMID: 39524306 PMCID: PMC11546105 DOI: 10.1021/acscatal.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are of great interest to the agrochemical, materials, and pharmaceutical industries. In particular, synthetic methods to access 1,3-dicarbosubsituted BCP-aryls have recently been developed, but most protocols rely on the stepwise C-C bond formation via the initial manipulation of BCP core to make the BCP electrophile or nucleophile followed by a second step (e.g., transition-metal-mediated cross-coupling step) to form the second key BCP-aryl bond. Moreover, despite the prevalence of C-F bonds in bioactive compounds, one-pot, multicomponent cross-coupling methods to directly functionalize [1.1.1]propellane to the corresponding fluoroalkyl BCP-aryl scaffolds are lacking. In this work, we describe a conceptually different approach to access diverse (fluoro)alkyl BCP-aryls at low temperatures and fast reaction times enabled by an iron-catalyzed multicomponent radical cross-coupling reaction from readily available (fluoro)alkyl halides, [1.1.1]propellane, and Grignard reagents. Further, experimental and computational mechanistic studies provide insights into the mechanism and ligand effects on the nature of C-C bond formation. Finally, these studies are used to develop a method to rapidly access synthetic versatile (difluoro)alkyl BCP halides via bisphosphine-iron catalysis.
Collapse
Affiliation(s)
- Angel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuai Yin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
29
|
Oderinde MS, Jin S, Das J, Jorge C, Yip S, Ramirez A, Wu DR, Li Y, Kempson J, Meanwell NA, Mathur A, Dhar TGM. Photo-Initiated Nickel Catalysis (PiNiC): Unmasking Dimethylnickel with Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martins S. Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Soomin Jin
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Jayanta Das
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Christine Jorge
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Shiuhang Yip
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical & Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Dauh-Rurng Wu
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Ying Li
- Separation & Analysis Technology Team, Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - James Kempson
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Nicholas A. Meanwell
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - T. G. Murali Dhar
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
30
|
Laudadio G, Palkowitz MD, El-Hayek Ewing T, Baran PS. Decarboxylative Cross-Coupling: A Radical Tool in Medicinal Chemistry. ACS Med Chem Lett 2022; 13:1413-1420. [PMID: 36105339 PMCID: PMC9465705 DOI: 10.1021/acsmedchemlett.2c00286] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Carboxylic acids, the most versatile and ubiquitous diversity input used in medicinal chemistry for canonical polar bond constructions such as amide synthesis, can now be employed in a fundamentally different category of reaction to make C-C bonds by harnessing the power of radicals. This outlook serves as a user-guide to aid practitioners in both the design of syntheses that leverage the simplifying power of this disconnection and the precise tactics that can be employed to enable them. Taken together, this emerging area holds the potential to rapidly accelerate access to chemical space of value to modern medicinal chemistry.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, Calilfornia 92037, United States
| | - Maximilian D. Palkowitz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, Calilfornia 92037, United States
| | - Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, Calilfornia 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, Calilfornia 92037, United States
| |
Collapse
|
31
|
Exploiting the sp 2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat Chem 2022; 14:1068-1077. [PMID: 35864151 PMCID: PMC9420824 DOI: 10.1038/s41557-022-00979-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Strained bicyclic substructures are increasingly relevant in medicinal chemistry discovery research because of their role as bioisosteres. Over the last decade, the successful use of bicyclo[1.1.1]pentane (BCP) as a para-disubstituted benzene replacement has made it a highly valuable pharmacophore. However, various challenges, including limited and lengthy access to useful BCP building blocks, are hampering early discovery research. Here we report a single-step transition-metal-free multi-component approach to synthetically versatile BCP boronates. Radicals derived from commonly available carboxylic acids and organohalides perform additions onto [1.1.1]propellane to afford BCP radicals, which then engage in polarity-matched borylation. A wide array of alkyl-, aryl- and alkenyl-functionalized BCP boronates were easily prepared. Late-stage functionalization performed on natural products and approved drugs proceeded with good efficiency to generate the corresponding BCP conjugates. Various photoredox transformations forging C-C and C-N bonds were demonstrated by taking advantage of BCP trifluoroborate salts derived from the BCP boronates.
Collapse
|
32
|
Yedase GS, Venugopal S, Arya P, Yatham VR. Catalyst‐free Hantzsch ester‐mediated Organic Transformations Driven by Visible light. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Suresh Yedase
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Sreelakshmi Venugopal
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - P Arya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Veera Reddy Yatham
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry Thiruvananthapuram 695551 Thiruvananthapuram INDIA
| |
Collapse
|
33
|
Salgueiro DC, Chi BK, Guzei IA, García‐Reynaga P, Weix DJ. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022; 61:e202205673. [PMID: 35688769 PMCID: PMC9378488 DOI: 10.1002/anie.202205673] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Strained rings are increasingly important for the design of pharmaceutical candidates, but cross-coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all-carbon quaternary centers is the coupling of abundant strained-ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel-catalyzed cross-electrophile approach that couples a variety of strained ring N-hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery that t-Bu BpyCamCN , an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96-well plates.
Collapse
Affiliation(s)
| | - Benjamin K. Chi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Ilia A. Guzei
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | | | - Daniel J. Weix
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
34
|
Xu Y, Zhang M, Oestreich M. Photochemical, Nickel-Catalyzed C(sp 3)–C(sp 3) Reductive Cross-Coupling of α-Silylated Alkyl Electrophiles and Allylic Sulfones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Xu
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Muliang Zhang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
35
|
Huang W, Keess S, Molander GA. Dicarbofunctionalization of [1.1.1]Propellane Enabled by Nickel/Photoredox Dual Catalysis: One-Step Multicomponent Strategy for the Synthesis of BCP-Aryl Derivatives. J Am Chem Soc 2022; 144:12961-12969. [PMID: 35793500 DOI: 10.1021/jacs.2c05304] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclo[1.1.1]pentane (BCP) motifs as para-disubstituted aryl bioisosteres are playing an emerging role in pharmaceutical, agrochemical, and materials chemistry. The vast majority of these structures is obtained from a BCP electrophile or nucleophile, which are themselves derived from [1.1.1]propellane via cleavage of the internal C-C bond through the addition of either radicals or metal-based nucleophiles. Compared with the current stepwise approaches, a multicomponent reaction that provides direct access to complex and diverse disubstituted BCP products would be more attractive. Herein, we report a single-step, multicomponent approach to synthetically versatile arylated BCP products via nickel/photoredox catalysis. Importantly, this three-component process allows two C-C bonds to be formed in a single step and sets three quaternary centers, unprecedented in any previously reported methods. The method has been demonstrated to allow access to complex BCP architectures from aryl halide and radical precursor substrates.
Collapse
Affiliation(s)
- Weichen Huang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| |
Collapse
|
36
|
Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Control of Redox‐Active Ester Reactivity Enables a General Cross‐Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Benjamin K. Chi
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | - Ilia A. Guzei
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | | | - Daniel John Weix
- UW-Madison: University of Wisconsin Madison Chemistry 1101 University Avenue 53706 Madison UNITED STATES
| |
Collapse
|
37
|
Cabrera-Afonso MJ, Granados A, Molander GA. Sustainable Thioetherification via Electron Donor-Acceptor Photoactivation Using Thianthrenium Salts. Angew Chem Int Ed Engl 2022; 61:e202202706. [PMID: 35294095 PMCID: PMC9117462 DOI: 10.1002/anie.202202706] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of sulfides has been widely studied because this functional subunit is prevalent in biomolecules and pharmaceuticals, as well as being a useful synthetic platform for further elaboration. Thus, various methods to build C-S bonds have been developed, but typically they require the use of precious metals or harsh conditions. Electron donor-acceptor (EDA) complex photoactivation strategies have emerged as versatile and sustainable ways to achieve C-S bond formation, avoiding challenges associated with previous methods. This work describes an open-to-air, photoinduced, site-selective C-H thioetherification from readily available reagents via EDA complex formation that tolerates a wide range of different functional groups. Moreover, C(sp2 )-halogen bonds remain intact using this protocol, allowing late-stage installation of the sulfide motif in various bioactive scaffolds, while allowing yet further modification through more traditional C-X bond cleavage protocols. Additionally, various mechanistic investigations support the envisioned EDA complex scenario.
Collapse
Affiliation(s)
- María Jesús Cabrera-Afonso
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Albert Granados
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
38
|
Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. A practical and sustainable two-component Minisci alkylation via photo-induced EDA-complex activation. Chem Sci 2022; 13:5701-5706. [PMID: 35694363 PMCID: PMC9116295 DOI: 10.1039/d2sc01363k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
An operationally simple, open-air, and efficient light-mediated Minisci C-H alkylation method is described, based on the formation of an electron donor-acceptor (EDA) complex between nitrogen-containing heterocycles and redox-active esters. In contrast to previously reported protocols, this method does not require a photocatalyst, an external single electron transfer agent, or an oxidant additive. Achieved under mildly acidic and open-air conditions, the reaction incorporates primary-, secondary-, and tertiary radicals, including bicyclo[1.1.1]pentyl (BCP) radicals, along with various heterocycles to generate Minisci alkylation products in moderate to good yields. Additionally, the method is exploited to generate a stereo-enriched, hetereoaryl-substituted carbohydrate.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Eugénie Romero
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
39
|
Granados A, Cabrera-Afonso MJ, Escolano M, Badir SO, Molander GA. Thianthrenium-Enabled Sulfonylation via Electron Donor-Acceptor Complex Photoactivation. CHEM CATALYSIS 2022; 2:898-907. [PMID: 35846835 PMCID: PMC9282721 DOI: 10.1016/j.checat.2022.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfone-containing compounds are prevalent building blocks in pharmaceuticals and other biomolecules, and they serve as key intermediates in the synthesis of complex scaffolds. During the past decade, several methods have been developed to access sulfones. These strategies, however, require the use of strong reaction conditions, limiting their substrate scope. Recently, visible light-mediated transformations have emerged as novel platforms to access unprecedented structural motifs. This report demonstrates a thianthrenium-enabled sulfonylation via intra-complex charge transfer to generate transient aryl- and persistent sulfonyl radicals that undergo selective coupling to generate alkyl- and (hetero)aryl sulfones under ambient conditions. Importantly, this strategy allows retention of halide handles, presenting a complementary approach to transition metal-mediated photoredox couplings. Furthermore, this sulfonylation allows high functional group tolerance and is amenable to late-stage functionalization of complex biomolecules. Mechanistic investigations support the intermediacy of electron donor-acceptor (EDA) complexes.
Collapse
Affiliation(s)
- Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- These authors contributed equally
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- These authors contributed equally
| | - Marcos Escolano
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- Lead contact
| |
Collapse
|
40
|
Escolano M, Cabrera-Afonso MJ, Ribagorda M, Badir SO, Molander GA. Nickel-Mediated Synthesis of Non-Anomeric C-Acyl Glycosides through Electron Donor-Acceptor Complex Photoactivation. J Org Chem 2022; 87:4981-4990. [PMID: 35289617 PMCID: PMC10412007 DOI: 10.1021/acs.joc.1c03041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The preparation of nonanomeric C-acyl-saccharides has been developed from two different carboxylic acid feedstocks. This transformation is driven by the synergistic interaction of an electron donor-acceptor complex and Ni catalysis. Primary-, secondary-, and tertiary redox-active esters are incorporated as coupling partners onto preactivated pyranosyl- and furanosyl acids, preserving their stereochemical integrity. The reaction occurs under mild conditions, without stoichiometric metal reductants or exogenous catalysts, using commercially available Hantzsch ester as the organic photoreductant.
Collapse
Affiliation(s)
- Marcos Escolano
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Maria Ribagorda
- Facultad de Ciencias, Departamento de Química, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| |
Collapse
|
41
|
Cabrera-Afonso MJ, Granados A, Molander G. Sustainable Thioetherification via Electron Donor‐Acceptor Photoactivation using Thianthrenium Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Albert Granados
- University of Pennsylvania Department of Chemistry UNITED STATES
| | - Gary Molander
- University of Pennsylvania Department of Chemistry 231 South 34th Street 19104-6323 Philadelphia UNITED STATES
| |
Collapse
|
42
|
Nallagonda R, Musaev DG, Karimov RR. Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajender Nallagonda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
43
|
Mousseau JJ, Perry MA, Bundesmann MW, Chinigo GM, Choi C, Gallego G, Hicklin RW, Hoy S, Limburg DC, Sach NW, Zhang Y. Automated Nanomole-Scale Reaction Screening toward Benzoate Bioisosteres: A Photocatalyzed Approach to Highly Elaborated Bicyclo[1.1.1]Pentanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James J. Mousseau
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Matthew A. Perry
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Mark W. Bundesmann
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gary M. Chinigo
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Chulho Choi
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gary Gallego
- Pfizer La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Robert W. Hicklin
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Susan Hoy
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - David C. Limburg
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Neal W. Sach
- Pfizer La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Yuan Zhang
- Pfizer Medicine Design, 610 Main St., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Zhu C, Zhumagazy S, Yue H, Rueping M. Metal-free C-Se cross-coupling enabled by photoinduced inter-molecular charge transfer. Chem Commun (Camb) 2021; 58:96-99. [PMID: 34874034 DOI: 10.1039/d1cc06152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal-free C-Se cross-couplings via the formation of electron-donor-acceptor (EDA) complexes have been developed. The visible-light induced reactions can be applied for the synthesis of a series of unsymmetrical diaryl selenides employing aryl bromides, aryl iodides as well as aryl chlorides under mild reaction conditions. The scale-up was readily achieved. UV-Vis spectroscopy measurements provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Serik Zhumagazy
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
45
|
Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xianwei Sui
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hang T. Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
46
|
Behnke NE, Sales ZS, Li M, Herrmann AT. Dual Photoredox/Nickel-Promoted Alkylation of Heteroaryl Halides with Redox-Active Esters. J Org Chem 2021; 86:12945-12955. [PMID: 34464532 DOI: 10.1021/acs.joc.1c01625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein a method for the radical alkylation of heteroaryl halides that relies upon the combination of photoredox and nickel catalysis is described. The use of aliphatic N-(acyloxy)phthalimides as redox-active esters affords primary and secondary radicals for the decarboxylative dual cross-coupling with pyrimidine and pyridine heteroaryl chlorides, bromides, and iodides. The method provides an additional synthetic tool for the incorporation of medicinally relevant heterocyclic motifs.
Collapse
Affiliation(s)
- Nicole Erin Behnke
- Department of Chemistry, Rice University, BioScience Research Collaborative, 6500 Main Street, Rm 380, Houston, Texas 77030, United States
| | - Zachary S Sales
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Minyan Li
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|