1
|
Pulfer J, Duhamel A, Colpaert M, Storr T, Friesen CM. Effects of perfluoropyridine incorporation into poly(hydroxyethyl methacrylate). RSC Adv 2025; 15:14079-14087. [PMID: 40313321 PMCID: PMC12044414 DOI: 10.1039/d5ra01927c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Perfluoropyridine (PFP) is a heavily fluorinated heterocycle which readily undergoes nucleophilic aromatic substitution (SNAr) reactions at low temperatures. Herein, we report a facile synthesis of 2-hydroxyethyl methacrylate derivatives of PFP through solvothermal and mechanochemical means. The resulting monomers were polymerized to form hard, insoluble materials which offer an improvement in thermal stability compared to the starting alcohol. Most unusually the 4-substituted PFP-methacrylate derivative displays superior thermal properties in air compared to nitrogen and generally superior thermal properties compared to the starting alcohol. Additionally, di-substitution of the PFP to form the di-methacrylate appears to initiate decomposition of the monomer into ethylene glycol dimethacrylate through an acyl fluoride-mediated transesterification.
Collapse
Affiliation(s)
- Jason Pulfer
- Department of Chemistry, Simon Fraser University 8888 University Drive V5A 1S6 British Columbia Canada
- Department of Chemistry, Trinity Western University 22500 University Drive V2Y 1Y1 British Columbia Canada
| | - Alban Duhamel
- Université de Montpellier, Institut Universitaire de Technologie de Montpellier-Sète 99 Avenue d'Occitanie 34090 Montpellier France
| | - Maxime Colpaert
- ICGM, University of Montpellier, CNRS, ENSCM Montpellier France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University 8888 University Drive V5A 1S6 British Columbia Canada
| | - Chadron M Friesen
- Department of Chemistry, Trinity Western University 22500 University Drive V2Y 1Y1 British Columbia Canada
| |
Collapse
|
2
|
Kim SY, Lim HN. Deacetylative cyanation: a cyanide-free route to thiocyanates and cyanamides. Chem Commun (Camb) 2024; 60:13542-13545. [PMID: 39474757 DOI: 10.1039/d4cc04539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The use of N-hydroxy-2-oxopropanimidoyl chloride as a latent cyanide transfer agent is reported. This easy-to-handle, scalable, and operationally simple agent can be installed on common nucleophiles, including thiols and secondary amines, affording synthetically useful thiocyanates and cyanamides. This method complements conventional approaches that use poisonous and volatile cyanogen halides.
Collapse
Affiliation(s)
- Si Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
3
|
Prinčič G, Omahen B, Jelen J, Gruden E, Tavčar G, Iskra J. Chloroimidazolium Deoxyfluorination Reagent with H 2F 3- Anion as a Sole Fluoride Source. J Org Chem 2024; 89:10557-10561. [PMID: 39008626 DOI: 10.1021/acs.joc.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In the study, we introduce an air-stable NHC-based deoxyfluorination reagent ImCl[H2F3], offering a promising avenue for deoxyfluorination across various substrates. Reagent efficiently fluorinates benzyl alcohols, carboxylic acids, and P(V) compounds without external fluoride sources. A mechanistic study reveals a two-step process involving benzyl chloride as an intermediate, shedding light on the two-step reaction pathway. The Hammet plot provides insights into reaction mechanisms with different substrates, enhancing our understanding of this versatile deoxyfluorination method.
Collapse
Affiliation(s)
- Griša Prinčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Blaž Omahen
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jan Jelen
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Evelin Gruden
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Gašper Tavčar
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Jernej Iskra
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Weeks NJ, Geray LK, Lachapelle MB, Iacono ST. Halogenated Phenylpyridines Possessing Chemo-Selectivity for Diverse Molecular Architectures. ACS OMEGA 2024; 9:28961-28968. [PMID: 38973874 PMCID: PMC11223129 DOI: 10.1021/acsomega.4c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Pentafluoropyridine was used as a molecular building block for the installation of aryl bromides, affording a series of multisubstituted halogenated arenes. This operationally simplistic methodology offers precise regioselectivity, ease of scalability, and high purity. 19F Nuclear magnetic resonance (NMR) served as a key diagnostic tool for structural characterization, given the sensitivity with various aryl bromine substitutions on the fluorinated pyridine ring. Furthermore, molecular modeling simulations offered insight into this new class of halogenated phenylpyridines and their unique electronic and reactive properties. This study also demonstrates examples of efficient chemo-selectivity upon either metal-catalyzed aryl-aryl coupling or nucleophilic aromatic substitution of the aryl bromide or fluorinated pyridine scaffold, respectively. A diverse pool of polyarylene structures with high degree of complexity, functionalized linear polymers, and controlled network architectures were achieved from this simple methodology.
Collapse
Affiliation(s)
- Nathan J. Weeks
- Department of Chemistry and
Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - Lynsey K. Geray
- Department of Chemistry and
Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - Mikhail B. Lachapelle
- Department of Chemistry and
Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - Scott T. Iacono
- Department of Chemistry and
Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| |
Collapse
|
5
|
Neeliveettil A, Dey S, Nomula V, Thakur S, Giri D, Santra A, Sau A. Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride. Chem Commun (Camb) 2024; 60:4789-4792. [PMID: 38602165 DOI: 10.1039/d4cc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amide bond synthesis is one of the most used reactions in medicinal chemistry. We report an amide bond formation reaction through deoxyfluorinated carboxylic acids under mild conditions using 2-pyridinesulfonyl fluoride. The reaction procedure has been used in a one-pot synthesis of amides and esters via in situ generation of acyl fluoride. This one-pot synthetic method provides easy access to amides and esters. Using this method, we have sequentially synthesized a tetrapeptide and calceolarioside-B glycoside derivative with good yields.
Collapse
Affiliation(s)
- Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Vishnu Nomula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Thakur
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Debabrata Giri
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Abhishek Santra
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Sau
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Maas LM, Haswell A, Hughes R, Hopkinson MN. Direct synthesis of acyl fluorides from carboxylic acids using benzothiazolium reagents. Beilstein J Org Chem 2024; 20:921-930. [PMID: 38711592 PMCID: PMC11070953 DOI: 10.3762/bjoc.20.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
2-(Trifluoromethylthio)benzothiazolium triflate (BT-SCF3) was used as deoxyfluorinating reagent for the synthesis of versatile acyl fluorides directly from the corresponding carboxylic acids. These acyl fluorides were reacted with amines in a one-pot protocol to form different amides, including dipeptides, under mild and operationally simple conditions in high yields. Mechanistic studies suggest that BT-SCF3 can generate acyl fluorides from carboxylic acids via two distinct pathways, which allows the deoxyfluorinating reagent to be employed in sub-stoichiometric amounts.
Collapse
Affiliation(s)
- Lilian M Maas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin, Germany
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Rory Hughes
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Matthew N Hopkinson
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin, Germany
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Díaz-Kruik P, Paradisi F. Rapid production of the anaesthetic mepivacaine through continuous, portable technology. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:2313-2321. [PMID: 38380269 PMCID: PMC10875724 DOI: 10.1039/d3gc04375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Local anaesthetics such as mepivacaine are key molecules in the medical sector, so ensuring their supply chain is crucial for every health care system. Rapid production of mepivacaine from readily available commercial reagents and (non-dry) solvents under safe conditions using portable, continuous apparatus could make an impactful difference in underdeveloped countries. In this work, we report a continuous platform for synthesising mepivacaine, one of the most widely used anaesthetics for minor surgeries. With a focus on sustainability, reaction efficiency and seamless implementation, this platform afforded the drug in 44% isolated yield following a concomitant distillation-crystallisation on a gram scale after N-functionalisation and amide coupling, with full recovery of the solvents and excess reagents. The use of flow chemistry as an enabling tool allowed the use of "forbidden" chemistry which is typically challenging for preparative and large scale reactions in batch mode. Overall, this continuous platform presents a promising and sustainable approach that has the potential to meet the demands of the healthcare industry.
Collapse
Affiliation(s)
- Pablo Díaz-Kruik
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| |
Collapse
|
8
|
Chetankumar E, Bharamawadeyar S, Srinivasulu C, Sureshbabu VV. AITF (4-acetamidophenyl triflimide) mediated synthesis of amides, peptides and esters. Org Biomol Chem 2023; 21:8875-8882. [PMID: 37888883 DOI: 10.1039/d3ob01351k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A simple, broadly applicable protocol for amidation and esterification reactions is described. Thereby, 4-acetamidophenyl triflimide (AITF), a crystalline stable reagent, is employed for the activation of carboxylic acids. The use of AITF as a coupling agent is demonstrated in the synthesis of peptides, amides and esters under mild conditions in good to excellent yields. Notably, peptide segment condensations were also accomplished. A diverse array of synthetic protocols showcasing a broad substrate scope and good functional group compatibility were accomplished. Herein, we systematically summarized the use of AITF in peptide synthesis strategies.
Collapse
Affiliation(s)
- Eti Chetankumar
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Swetha Bharamawadeyar
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Chinthaginjala Srinivasulu
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Vommina V Sureshbabu
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| |
Collapse
|
9
|
Nair RR, Seo EW, Hong S, Jung KO, Kim D. Pentafluorobenzene: Promising Applications in Diagnostics and Therapeutics. ACS APPLIED BIO MATERIALS 2023; 6:4081-4099. [PMID: 37721519 DOI: 10.1021/acsabm.3c00676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pentafluorobenzene (PFB) represents a class of aromatic fluorine compounds employed exclusively across a spectrum of chemical and biological applications. PFBs are credited with developing various chemical synthesis techniques, networks and biopolymers, bioactive materials, and targeted drug delivery systems. The first part of this review delves into recent developments in PFB-derived molecules for diagnostic purposes. In the latter segment, PFB's role in the domain of theragnostic applications is discussed. The review elucidates different mechanisms and interaction strategies applied in leveraging PFBs to formulate diagnostic and theragnostic tools, substantiated by proper examples. The utilization of PFBs emerges as an enabler, facilitating manifold reactions, improving materials' properties, and even opening avenues for explorative research.
Collapse
Affiliation(s)
- Ratish R Nair
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Woo Seo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyoung Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Zhao M, Chen M, Wang T, Yang S, Peng Q, Tang P. Fluorocarbonylation via palladium/phosphine synergistic catalysis. Nat Commun 2023; 14:4583. [PMID: 37524725 PMCID: PMC10390470 DOI: 10.1038/s41467-023-40180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the growing importance of fluorinated organic compounds in pharmaceuticals, agrochemicals, and materials science, the introduction of fluorine into organic molecules is still a challenge, and no catalytic fluorocarbonylation of aryl/alkyl boron compounds has been reported to date. Herein, we present the development of palladium and phosphine synergistic redox catalysis of fluorocarbonylation of potassium aryl/alkyl trifluoroborate. Trifluoromethyl arylsulfonate (TFMS), which was used as a trifluoromethoxylation reagent, an easily handled and bench-scale reagent, has been employed as an efficient source of COF2. The reaction operates under mild conditions with good to excellent yields and tolerates diverse complex scaffolds, which allows efficient late-stage fluorocarbonylation of marked small-molecule drugs. Mechanistically, the key intermediates of labile Brettphos-Pd(II)-OCF3 complex and difluoro-Brettphos were synthesized and spectroscopically characterized, including X-ray crystallography. A detailed reaction mechanism involving the synergistic redox catalytic cycles Pd(II)/(0) and P(III)/(V) was proposed, and multifunction of phosphine ligand was identified based on 19F NMR, isotope tracing, synthetic, and computational studies.
Collapse
Affiliation(s)
- Mingxin Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Miao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Tian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Shuhan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
11
|
Freiberg KM, Kavthe RD, Thomas RM, Fialho DM, Dee P, Scurria M, Lipshutz BH. Direct formation of amide/peptide bonds from carboxylic acids: no traditional coupling reagents, 1-pot, and green. Chem Sci 2023; 14:3462-3469. [PMID: 37006678 PMCID: PMC10055766 DOI: 10.1039/d3sc00198a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Technology for generating especially important amide and peptide bonds from carboxylic acids and amines that avoids traditional coupling reagents is described. The 1-pot processes developed rely on thioester formation, neat, using a simple dithiocarbamate, and are safe and green, and rely on Nature-inspired thioesters that are then converted to the targeted functionality.
Collapse
Affiliation(s)
- Kaitlyn M Freiberg
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Rohan M Thomas
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - David M Fialho
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Paris Dee
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Matthew Scurria
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
12
|
Elwood JL, Henry MC, Lopez-Fernandez JD, Mowat JM, Boyle M, Buist B, Livingstone K, Jamieson C. Functionalized Tetrazoles as Latent Active Esters in the Synthesis of Amide Bonds. Org Lett 2022; 24:9491-9496. [PMID: 36524745 PMCID: PMC9806851 DOI: 10.1021/acs.orglett.2c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the use of N-2,4-dinitrophenyltetrazoles as latent active esters (LAEs) in the synthesis of amide bonds. Activating the tetrazole generates an HOBt-type active ester without the requirement for exogenous coupling agents. The methodology was widely applicable to a range of substrates, with up to quantitative yields obtained. The versatility and functional group tolerance were exemplified with the one-step synthesis of various pharmaceutical agents and the N-acylation of resin-bound peptides.
Collapse
|
13
|
Friesen CM, Kelley AR, Iacono ST. Shaken Not Stirred: Perfluoropyridine-Polyalkylether Prepolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia V2Y 1Y1, Canada
| | - Andrea R. Kelley
- Department of Chemistry, United States Air Force Academy, Colorado Springs, Colorado 80840, United States of America
| | - Scott T. Iacono
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States of America
| |
Collapse
|
14
|
Beardmore LND, Cobb SL, Brittain WDG. One-pot ester and thioester formation mediated by pentafluoropyridine (PFP). Org Biomol Chem 2022; 20:8059-8064. [PMID: 36047390 DOI: 10.1039/d2ob01268e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl fluorides are valuable synthetic intermediates, but in some cases they can be challenging to handle and difficult to isolate given their susceptibility to degradation. In addition, many reagents utilised to prepare acyl fluorides are incompatible with in situ generation strategies and require the acyl fluoride to be isolated before any further reaction can take place. The combination of these factors has meant that acyl fluorides are currently under investigated in nucleophilic substitution processes, and often only a limited substrate scope is tolerated where they have been used. Herein, we report that pentafluoropyridine can be utilised to generate acyl fluorides in situ under mild conditions, and that they can subsequently be used to generate a range of esters and thioesters. This methodology offers a simple one-pot synthesis of esters and thioesters directly from parent carboxylic acids.
Collapse
Affiliation(s)
- Liam N D Beardmore
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
15
|
Lee HJ, Choi ES, Maruoka K. Development of a catalytic ester activation protocol for the efficient formation of amide bonds using an Ar‐I/HF•pyridine/mCPBA system. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo-Jun Lee
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Eun-Sol Choi
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Keiji Maruoka
- Kyoto University Graduate School of Pharmaceutical Sciences Sakyo 606-8501 Kyoto JAPAN
| |
Collapse
|
16
|
Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Org Lett 2022; 24:6619-6624. [PMID: 36069423 DOI: 10.1021/acs.orglett.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrochemical amidation of benzoyl hydrazine/carbazate and primary/secondary amine as coupling partners via concomitant cleavage and formation of C(sp2)-N bonds has been achieved. This methodology proceeds under metal-free and exogenous oxidant-free conditions producing N2 and H2 as byproducts. Mechanistic studies reveal the in situ generations of both acyl and N-centered radicals from benzoyl hydrazines and amines. The utility of this protocol is demonstrated through a large-scale, and synthesis of bezafibrate, a hyperlipidemic drug.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Angshuman Palai
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
17
|
Nishihara Y, Tian T, Chen Q, Li Z. Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-3810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNumerous studies on the activation of carbon–fluorine bonds have been reported in recent years. For example, acyl fluorides have been utilized as versatile reagents for acylation, arylation, and even fluorination. In this review, we focus on acyl fluorides as compounds with carbon–fluorine bonds, and highlight recent advances in strategies for the activation of their C–F bonds via transition-metal catalysis, N-heterocyclic carbene (NHCs) catalysis, organophosphine catalysis, and classical nucleophilic substitution reactions.1 Introduction2 Transition-Metal-Mediated C–F Bond Activation2.1 Acylation (Carbonyl-Retentive) Coupling Reactions2.2 Decarbonylative Reactions2.3 C–F Bond Activation by Other Transition Metals3 C–F Bond Activation by N-Heterocyclic Carbenes (NHCs)3.1 NHC-Catalyzed Cycloaddition of Acyl Fluorides3.2 NHC-Catalyzed Radical Functionalization of Acyl Fluorides3.3 NHC-Catalyzed Nucleophilic Fluorination of (Hetero)aromatics4 C–F Bond Activation by Phosphines4.1 Phosphine-Catalyzed Direct Activation of the C–F Bond of Acyl Fluorides4.2 Phosphine-Catalyzed Indirect Activation of the C–F Bond of Acyl Fluorides5 C–F Bond Activation by Classical Nucleophilic Substitution6 Miscellaneous Examples7 Summary and Perspective
Collapse
Affiliation(s)
- Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University
| | - Tian Tian
- Graduate School of Natural Science and Technology, Okayama University
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University
| | - Zhiping Li
- Department of Chemistry, Renmin University of China
| |
Collapse
|
18
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
19
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
20
|
Morgan P, Saunders GC, Macgregor SA, Marr AC, Licence P. Nucleophilic Fluorination Catalyzed by a Cyclometallated Rhodium Complex. Organometallics 2022; 41:883-891. [PMID: 35571260 PMCID: PMC9098193 DOI: 10.1021/acs.organomet.2c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Quantitative catalytic nucleophilic fluorination of a range of acyl chlorides to acyl fluorides was promoted by a cyclometallated rhodium complex [(η5,κ2C-C5Me4CH2C6F5CH2NC3H2NMe)- RhCl] (1). 1 can be prepared in high yields from commercially available starting materials using a one-pot method. The catalyst could be separated, regenerated, and reused. Rapid quantitative fluorination generated the fluoride analogue of the active pharmaceutical ingredient probenecid. Infrared in situ monitoring verified the clean conversion of the substrates to products. VTNA graphical kinetic analysis and DFT calculations lead to a postulated reaction mechanism involving a nucleophilic Rh-F bond.
Collapse
Affiliation(s)
- Patrick
J. Morgan
- GSK
Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K.
| | | | - Stuart A. Macgregor
- School
of Engineering and Physical Sciences, Heriot-Watt
University, William H. Perkin Building, Edinburgh EH14 4AS, U.K.
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Belfast BT9 5AG, U.K.
| | - Peter Licence
- GSK
Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K.
| |
Collapse
|
21
|
Gautam R, Geniza I, Iacono ST, Friesen CM, Jennings AR. Perfluoropyridine: Discovery, Chemistry, and Applications in Polymers and Material Science. Molecules 2022; 27:1616. [PMID: 35268717 PMCID: PMC8911800 DOI: 10.3390/molecules27051616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Perfluoropyridine (PFPy) is an organofluorine compound that has been employed for a variety of applications, from straightforward chemical synthesis to more advanced functions, such as fluorinated networks and polymers. This can be directly attributed to the highly reactive nature of PFPy, especially towards nucleophilic aromatic substitution (SNAr). The aim of this review is to highlight the discovery and synthesis of PFPy, discuss its reactive nature towards SNAr, and to summarize known reports of the utilization and thermal analysis of PFPy containing fluoropolymers and fluorinated network materials.
Collapse
Affiliation(s)
- Ritesh Gautam
- Department of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA; (R.G.); (I.G.); (S.T.I.)
| | - Ian Geniza
- Department of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA; (R.G.); (I.G.); (S.T.I.)
| | - Scott T. Iacono
- Department of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA; (R.G.); (I.G.); (S.T.I.)
| | - Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, BC V2Y 1Y1, Canada;
| | - Abby R. Jennings
- Department of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA; (R.G.); (I.G.); (S.T.I.)
| |
Collapse
|
22
|
Li Y, Li J, Bao G, Yu C, Liu Y, He Z, Wang P, Ma W, Xie J, Sun W, Wang R. NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization. Org Lett 2022; 24:1169-1174. [PMID: 34994572 DOI: 10.1021/acs.orglett.1c04258] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we explored an unprecedented mild, nonirritating, conveniently available, and recyclable coupling reagent NDTP, which could activate the carboxylic acids via acyl thiocyanide and enable the rapid amide and peptide synthesis at very mild conditions. In addition, the methodology was compatible with Fmoc-SPPS, which may provide an alternative to peptide manufacturing.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China.,Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| |
Collapse
|
23
|
Xie J, Gu C, Wang S, Zhang Q. Visible-light-mediated amidation from carboxylic acids and tertiary amines via C-N cleavage. Chem Commun (Camb) 2022; 58:5873-5876. [DOI: 10.1039/d2cc01655a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we report a photocatalyzed amidation strategy from carboxylic acids and tertiary amines through the C-N bond cleavage. A wide scope of structurally diverse carboxylic acids participates smoothly...
Collapse
|