1
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
2
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Fitz-Henley JN, Rozema SD, Golden JE. Dihydropyrazinoquinazolinones via S N2 Sulfamidate Ring-Opening and a Sequential Quinazolinone-Amidine Rearrangement Strategy (SQuAReS). J Org Chem 2022; 87:14889-14898. [PMID: 36194836 PMCID: PMC9795801 DOI: 10.1021/acs.joc.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A synthesis of dihydropyrazino-[2,1-b]-quinazolinones is described using a 2-alkylaminoquinazolinone-mediated ring opening of a-/chiral sulfamidates, followed by a tandem quinazolinone-amidine rearrangement termed SQuAReS. This approach takes advantage of sulfamidates whose regioselective ring opening, after hydrolysis, appends an optimally distanced nucleophilic amine to a quinazolinone such that subsequent domino rearrangements are favored, integrating unique substitution patterns on a privileged core. This three-step protocol integrated five telescoped transformations and generated 20 pyrazinoquinazolinones in up to 74% yield with high enantiomeric fidelity and diastereoselectivity.
Collapse
Affiliation(s)
- Jhewelle N Fitz-Henley
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Soren D Rozema
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jennifer E Golden
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Ryan MC, Kim E, Cao X, Reichard W, Ogorek TJ, Das P, Jonsson CB, Baudry J, Chung D, Golden JE. Piperazinobenzodiazepinones: New Encephalitic Alphavirus Inhibitors via Ring Expansion of 2-Dichloromethylquinazolinones. ACS Med Chem Lett 2022; 13:546-553. [PMID: 35450382 PMCID: PMC9014857 DOI: 10.1021/acsmedchemlett.1c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
![]()
Venezuelan and eastern
equine encephalitis viruses are disease-causing,
neuropathic pathogens with no approved treatment options in humans.
While expanding the pharmacophoric model of antialphaviral amidines
prepared via a quinazolinone rearrangement, we discovered that diamine-treated,
2-dihalomethylquinolinones unexpectedly afforded ring-expanded piperazine-fused
benzodiazepinones. Notably, this new chemotype (19 examples) showed
potent, submicromolar inhibition of virus-induced cell death, >7-log
reduction of viral yield, and tractable structure–activity
relationships across both viruses. Antiviral activity was confirmed
in primary human neuronal cells. A mechanistic rationale for product
formation is proposed, and key structural elements were comparatively
modeled between a similarly substituted antiviral amidine and piperazinobenzodiazepinone
prototypes to guide future antiviral development.
Collapse
Affiliation(s)
- Michael C. Ryan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Eunjung Kim
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Xufeng Cao
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Walter Reichard
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Pronay Das
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jerome Baudry
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Donghoon Chung
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jennifer E. Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Abaee MS, Hatamifard A, Mojtahedi MM, Notash B, Naderi S. Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2021.2024573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Saeed Abaee
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Arezo Hatamifard
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad M. Mojtahedi
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Behrouz Notash
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Soheila Naderi
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|