1
|
Lei Z, Wan S, Liu F, Dong J, Zhou Y. Cu-Catalyzed Cycloaromatization and Amination of 2-Bromoaryl Nitriles, Terminal Alkynes, and Amines for 1-Aminoisoquinoline Synthesis. Org Lett 2025. [PMID: 40388198 DOI: 10.1021/acs.orglett.5c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
We report a copper-catalyzed 6-endo-dig cycloaromatization and amination of 2-bromoaryl nitriles, terminal alkynes, and amines for efficient and selective synthesis of 1-aminoisoquinolines, which involves difunctionalization of the cyano group with amination of its carbon atom. A variety of 1-aminoisoquinolines, as well as derivatives of modified amino-containing drug molecules, are readily achieved in water. Cu(III)-acetylide serves as intermediate and governs the exclusive 6-endo-dig selectivity, suppressing undesired 5-exo-dig byproducts.
Collapse
Affiliation(s)
- Zhennan Lei
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Saihong Wan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Wang X, Yuan F, Szostak M. Quinazolinone-to-Isoquinoline Metamorphosis by Ruthenium-Catalyzed [4+2] Annulation with Sulfoxonium Ylides. Org Lett 2024; 26:10951-10957. [PMID: 39655661 DOI: 10.1021/acs.orglett.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular editing of quinazolinones to isoquinolines by a novel ruthenium-catalyzed [4+2] annulation with sulfoxonium ylides has been developed. The method permits the precise and rapid assembly of multisubstituted aminoisoquinolines, a class of heterocycles that play a privileged role in organic synthesis and pharmaceutical development. This new catalytic process exhibits novel programmability, including directed C-H acetylation, nucleophilic cyclization, and alcoholysis. Remarkably, various 2-arylquinazolinones and sulfoxonium ylides could be employed in excellent yields with broad functional group tolerance. This heterocycle-to-heterocycle protocol is compatible with green chemistry using an EtOH solvent and releasing H2O and dimethyl sulfoxide as byproducts.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Fei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
4
|
Xiang G, Wang Y, Lu L, Zhang X, Huang Q. Diversity-Oriented Synthesis of Indole-Fused Polycyclic Scaffolds via Rhodium-Catalyzed NH-Indole-Directed C-H Coupling of 2-Phenyl-1 H-indoles with Propargylic Alcohol Derivatives. J Org Chem 2024; 89:5589-5605. [PMID: 38576240 DOI: 10.1021/acs.joc.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Diversity-oriented synthesis strategy for the efficient assembly of indole-fused polycyclic scaffolds via rhodium-catalyzed NH-indole-directed C-H coupling with propargylic alcohol derivatives in a regioselective manner was developed. Five 2-phenyl-1H-indole-embedded core skeletons were synthesized. In particular, three different indole-fused exo-olefin-containing polycycles were realized, which may be manipulated for further chemistry.
Collapse
Affiliation(s)
- Guijiao Xiang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yanqiao Wang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Leipeng Lu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
5
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
6
|
Kotipalli R, Babu US, Nanubolu JB, Reddy MS. Rh-catalyzed chemo-, stereo- and regioselective C-H cascade annulation of indolyloxopropanenitriles for pyranoindoles. Chem Commun (Camb) 2023; 59:10137-10140. [PMID: 37503886 DOI: 10.1039/d3cc02762g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Selective annulations of alkynes represent a powerful tool for constructing multicyclic scaffolds while installing desired substitution patterns with precision. Herein, we report a Rh-catalyzed unique annulation of indolyl oxopropanenitrile with hydroxy-alkynoates to access pyranoindole cyclic motifs, featuring enol oxygen as a rare chemoselective reactive terminal. The reaction proceeds via a five-membered oxy-rodacycle through C-H activation by a rhodium complex guided by enolic- and propargyloxy dual co-ordination to enable a regio- and stereoselective modular assembly.
Collapse
Affiliation(s)
- Ramesh Kotipalli
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
7
|
Yue X, Gao Y, Huang J, Feng Y, Cui X. Rhodium-Catalyzed [4 + 2] Cascade Annulation to Easy Access N-Substituted Indenoisoquinolinones. Org Lett 2023; 25:2923-2927. [PMID: 37114383 DOI: 10.1021/acs.orglett.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
An efficient approach for the synthesis of N-substituted indenoisoquinolinones via rhodium(III)-catalyzed C-H bond activation/subsequent [4 + 2] cyclization starting from easily available 2-phenyloxazolines and 2-diazo-1,3-indandiones has been developed. A series of indeno[1,2-c]isoquinolinones were obtained in up to 93% yield through C-H functionalization, followed by intramolecular annulation, elimination, and ring-opening in a "one pot manner" under mild reaction conditions. This protocol features excellent atom- and step-economy and provides a novel strategy for the synthesis of N-substituted indenoisoquinolinones and a chance to study their biological activities.
Collapse
Affiliation(s)
- Xuelin Yue
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yijie Gao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Junwei Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yadong Feng
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province and Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
8
|
Suresh V, Naveen Kumar M, Nagireddy A, Sridhar Reddy M. Rhodium‐Catalyzed Dual C−H Activation for Regioselective Triple Annulation of Enaminones: Access to Polycyclic Naphthopyran Derivatives. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Vavilapalli Suresh
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Muniganti Naveen Kumar
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Attunuri Nagireddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Maddi Sridhar Reddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| |
Collapse
|
9
|
Dattatri, Kumar Reddy Singam M, Vavilapalli S, Babu Nanubolu J, Sridhar Reddy M. Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual C-H Functionalization/Dual Oxidative Cyclization. Angew Chem Int Ed Engl 2023; 62:e202215825. [PMID: 36583268 DOI: 10.1002/anie.202215825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The C-H functionalization strategy provides access to valuable molecules that previously required convoluted synthetic attempts. Dual C-H unsymmetrical functionalization, with a single bifunctional reagent, is an effective tactic. Propargyl alcohols (PAs), despite containing a reactive C≡C bond, have not been explored as building blocks via oxidative cleavage. Annulations via C-H activation are a versatile and synthetically attractive strategy. We disclose PA as a new bifunctional reagent for unsymmetrical dual C-H functionalization of biphenylamine for regioselectively annulated outcomes. On tuning the conditions, the annulation bifurcated towards an unusual dual oxidative cyclization. This method accommodates a wide range of PAs and showcases late-stage diversification of some natural products.
Collapse
Affiliation(s)
- Dattatri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suresh Vavilapalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
10
|
Sankaram GS, Sahoo T, Sridhar B, Subba Reddy BV. Rhodium(III)-catalyzed oxidative annulation of N-arylbenzamidines with maleimides via dual C-H activation. Org Biomol Chem 2023; 21:1719-1724. [PMID: 36723131 DOI: 10.1039/d2ob01972h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An oxidative annulation of N-arylbenzimidamides with maleimides has been developed for the first time using a catalytic amount of the [Cp*RhCl2]2 complex for the synthesis of a diverse range of 1H-benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c]isoquinoline-1,3(2H)-dione derivatives. This method is versatile and atom-economical for producing polycyclic benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c] isoquinoline-1,3(2H)-dione scaffolds in a single step.
Collapse
Affiliation(s)
- G Siva Sankaram
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
11
|
Chen L, Xiong W, Ma Y, Ge JY, Lv N, Wu X, Chen J, Chen Z. Synthesis of 1-Aminoisoquinolines and Their Application in a Host-Guest Doped Strategy To Construct Ultralong Room-Temperature Phosphorescence Materials for Bioimaging. Chemistry 2023; 29:e202202909. [PMID: 36326711 DOI: 10.1002/chem.202202909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system. A series of host-guest RTP materials with wide-ranging lifetimes from 4.4 to 299.3 ms were constructed by doping various substituted isoquinolines derivatives into benzophenone (BP). Furthermore, 4 r/BP nanoparticles could be used for in-vivo imaging with a signal-to-noise ratio value as high as 32, revealing the potential of the isoquinoline framework for the construction of high-performance RTP materials.
Collapse
Affiliation(s)
- Lepeng Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wenzhang Xiong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ningning Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
12
|
Tang Z, Pi C, Wu Y, Cui X. Rhodium-Catalyzed Tandem Acylmethylation/Annulation Reactions of 2-Aryl-2 H-indazoles with Sulfoxonium Ylides: Easy Access to 6-Arylindazolo[2,3- a]quinolines. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
13
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
14
|
Nagireddy A, Kotipalli R, Nanubolu JB, Sridhar Reddy M. Rhodium-Catalyzed Coordination-Assisted Regioselective and Migratory Three-Point Double Annulation of o-Alkenyl Phenols with Tertiary Propargyl Alcohols. Org Lett 2022; 24:5062-5067. [PMID: 35815845 DOI: 10.1021/acs.orglett.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We disclose herein a Rh(III)-catalyzed migratory three-point double annulation of o-alkenyl phenols with propargyl alcohols for de novo construction of naphtho furan derivatives in a regio- and chemoselective manner. The protocol orchestrates two new rings with four new bonds in one operation without the need for any additive. Necessary labeled and control experiments are conducted to elucidate the reaction mechanism. A tertiary hydroxyl group is found to be crucial both for controlling the regioselective insertion of alkyne through chelation with rhodium to form a key spiro cyclic intermediate and for forcing ring expansion via unusual and selective olefin reshuffling, apart from forming an extra (furan) ring. The protocol is scalable and shows tolerance for late stage functionalization of natural products.
Collapse
Affiliation(s)
- Attunuri Nagireddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ramesh Kotipalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Analytical Department, CSIR-IICT, Hyderabad 500007, India
| | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
15
|
Mishra S, Nair SR, Baire B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic Alcohols. Org Biomol Chem 2022; 20:6037-6056. [PMID: 35678139 DOI: 10.1039/d2ob00587e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propargylic alcohols are one of the readily available and highly explored building blocks in organic synthesis. They show distinct reactivities compared to simple alcohols and/or alkynes, and hence provide diverse possibilities to develop novel synthetic strategies for the construction of polycyclic systems, including heterocycles. The six-membered heterocycles, pyridines, quinolines, and isoquinolines, are very important privileged structures in medicinal chemistry and drug discovery due to their broad spectrum of biological activities. They are also part of vitamins, nucleic acids, pharmaceuticals, antibiotics, dyes, and agrochemicals. Many synthetic strategies have been developed for the rapid and efficient generation of these cyclic systems. One such strategy is employing the propargylic alcohols as reactants in the form of either a 3-carbon component or 2-carbon unit. Thus, in this review article, we aimed to summarize various approaches to pyridines, quinolines, and isoquinolines from propargylic alcohols. To the best of our knowledge, so far, no focused reviews have appeared on this topic in the literature. Due to the many reports available, we also restricted ourselves to the developments during the past 17 years, i.e., 2005-2021. We strongly believe that this review article provides comprehensive coverage of research articles on the title topic, and will be of great value for the organic synthetic community for further developments in this area of research.
Collapse
Affiliation(s)
- Surabhi Mishra
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Sindoori R Nair
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Beeraiah Baire
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
16
|
Zhang S, Xu G, Yan H, Wu Q, Meng J, Duan J, Guo K. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Zhao X, Yue X, Han Z, Feng Y, Gao T, Li S, Cui X. Rhodium-Catalysed Regioselective [4+2]-type Annulation of 1-H-Indazoles with Propargyl Alcohols: A direct entry to 6-alkenylindazolo[3,2-a]isoquinolines. Org Chem Front 2022. [DOI: 10.1039/d2qo01258h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 6-vinylindazolo[3,2-a]isoquinolines via rhodium(III)-catalysed C-H bond activation/subsequent [4+2] cyclization starting from easily available 3-aryl-1-H-indazoles and propargyl alcohols has been developed. A series of vinyl-annulated...
Collapse
|
18
|
Nagireddy A, Dattatri, Kotipalli R, Nanubolu JB, Reddy MS. Rhodium-Catalyzed Regioselective Double Annulation of Enaminones with Propargyl Alcohols: Rapid Access to Arylnapthalene Lignan Derivatives. J Org Chem 2021; 87:1240-1248. [PMID: 34965126 DOI: 10.1021/acs.joc.1c02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present here a rhodium-catalyzed oxidative three-point double annulation of enaminones with propargylic alcohols via a C-H and a C-N bond activation to access arylnaphthalene-based lignan derivatives. The key step in the reaction is the regioselective insertion of propargylic alcohol into the rhoda-cycle, a result of hydroxyl rhodium coordination. Necessary control experiments and KIE studies were conducted to determine the mechanism.
Collapse
Affiliation(s)
- Attunuri Nagireddy
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Dattatri
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
19
|
Reddy Singam MK, Suri Babu U, Suresh V, Nanubolu JB, Sridhar Reddy M. Rhodium-Catalyzed Annulation of Phenacyl Ammonium Salts with Propargylic Alcohols via a Sequential Dual C-H and a C-C Bond Activation: Modular Entry to Diverse Isochromenones. Org Lett 2021; 23:7888-7893. [PMID: 34612648 DOI: 10.1021/acs.orglett.1c02890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given their omnipresence in natural products and pharmaceuticals, isochromenone congeners are one of the most privileged scaffolds to synthetic chemists. Disclosed herein is a dual (ortho/meta) C-H and C-C activation of phenacyl ammonium salts (acylammonium as traceless directing group) toward annulation with propargylic alcohols to accomplish rapid access for novel isochromenones by means of rhodium catalysis from readily available starting materials. This operationally simple protocol features broad substrate scope and wide functional group tolerance. Importantly, the protocol circumvents the need of any stoichiometric metal oxidants and proceeds under aerobic conditions.
Collapse
Affiliation(s)
- Maneesh Kumar Reddy Singam
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vavilapalli Suresh
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|