1
|
Han S, Liu L, Meng J, Li M, Cao Q, Shen Z. Photoredox Iron-Catalyzed Decarboxylative Radical Cyclization for the Synthesis of Oxindoles and Chroman-4-ones. J Org Chem 2025. [PMID: 40372260 DOI: 10.1021/acs.joc.5c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
A sustainable, photocatalytic approach for the synthesis of oxindoles and chroman-4-ones was developed using carboxylate salts as radical precursors and FeCl3 as a catalyst. The reaction proceeds via a decarboxylative radical cyclization mechanism triggered by ligand-to-metal charge transfer under visible light irradiation, operating efficiently at room temperature. This method demonstrates excellent substrate scope, including the use of various alkyl carboxylates, and functional group tolerance and offers a scalable pathway for gram-scale synthesis, highlighting its practical application.
Collapse
Affiliation(s)
- Shaoyang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Advanced Separation Membrane Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Litao Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqing Meng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qun Cao
- School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Advanced Separation Membrane Materials, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Liu YL, Shi LS, He XC, Gao J, Li KR, Xiang HY, Chen K, Yang H. Photoredox nickel-catalyzed radical cyclization of N-arylacrylamides with alkyl bromides. Org Biomol Chem 2025; 23:3126-3130. [PMID: 40008810 DOI: 10.1039/d5ob00078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
3,3-Disubstituted oxindoles constitute a significant class of biologically active molecules, often found in a wide range of bioactive compounds. In this work, we present a photoredox nickel-catalyzed intermolecular cyclization between N-arylacrylamides and readily accessible alkyl bromides, which affords a diverse range of 3,3-disubstituted oxindoles in moderate to high yields. Our mechanistic studies reveal that the reduction of alkyl bromides via single-electron transfer from a reactive Ni(I) species is a critical step in driving this radical cascade transformation. This approach offers several advantages, including mild reaction conditions, broad functional group tolerance, and a simple workup procedure.
Collapse
Affiliation(s)
- Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Liu-Shuo Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
3
|
Yang P, Wang L, Yan M, Yuan J, Xiao Y, Yang L, Xu X, Qu L. Visible-light-induced radical-cascade alkylation/cyclization of acrylamides: access to 3,3-dialkylated oxindoles. Org Biomol Chem 2025; 23:1653-1661. [PMID: 39777436 DOI: 10.1039/d4ob01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A visible-light-induced deoxygenative alkylation/cyclization of acrylamides with alcohols activated by CS2 has been developed by using xanthate salts as alkyl radical precursors in the presence of tricyclohexylphosphine. It proceeds through a tandem radical addition/cyclization process, and this protocol provides a reliable and practical approach to building the skeleton of 3,3-disubstituted oxindoles in moderate to good yields. Notable features of this reaction include readily available starting reagents, broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiujuan Xu
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Zhongyuan Institute of Science and Technology, Zhengzhou 451400, China
| |
Collapse
|
4
|
Tajima R, Tanaka K, Aida K, Ota E, Yamaguchi J. Catalytic Reductive Homocoupling of Benzyl Chlorides Enabled by Zirconocene and Photoredox Catalysis. PRECISION CHEMISTRY 2025; 3:43-50. [PMID: 39886378 PMCID: PMC11775857 DOI: 10.1021/prechem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/01/2025]
Abstract
The bibenzyl skeleton is prevalent in numerous natural products and other biologically active compounds. Radical homocoupling provides a straightforward approach for synthesizing bibenzyls in a single step with the reductive homocoupling of benzyl halides undergoing extensive development. Unlike benzyl bromides and other tailored precursors used in visible-light-mediated homocoupling, benzyl chlorides offer greater abundance and chemical stability. Nevertheless, achieving chemoselective cleavage of the C-Cl bond poses significant challenges, with only a limited number of studies reported to date. Herein, we demonstrate a catalytic reductive homocoupling of benzyl chlorides facilitated by zirconocene and photoredox catalysis. This cooperative catalytic system promotes C-Cl bond cleavage in benzyl chlorides under mild conditions and supports the homocoupling of a wide range of benzyl chlorides, including those derived from pharmaceutical agents. Our preliminary mechanistic investigations highlight the pivotal role of hydrosilane in the catalytic cycle.
Collapse
Affiliation(s)
- Ryota Tajima
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Keisuke Tanaka
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
5
|
Senapati S, Kumar Hota S, Kloene L, Empel C, Murarka S, Koenigs RM. C-H Alkylation of Heterocycles via Light-Mediated Palladium Catalysis. Angew Chem Int Ed Engl 2025; 64:e202417107. [PMID: 39466675 DOI: 10.1002/anie.202417107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Methods enabling direct C-H alkylation of heterocycles are of fundamental importance in the late-stage modification of natural products, bioactive molecules, and medicinally relevant compounds. However, there is a scarcity of a general strategy for the direct C-H alkylation of a variety of heterocycles using commercially available alkyl surrogates. We report an operationally simple palladium-catalyzed direct C-H alkylation of heterocycles using alkyl halides under the visible light irradiation with good scalability and functional group tolerance. Our studies suggest that the photoinduced alkylation proceeds through a cascade of events comprising, site-selective alkyl radical addition, base-assisted deprotonation, and oxidation. A combination of experiments and computations was employed for the generalization of this strategy, which was successfully translated towards the modification of natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Sudip Senapati
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Lennard Kloene
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| |
Collapse
|
6
|
Velisoju VK, Ramos-Fernández EV, Kancherla R, Ahmad R, Pal K, Mohamed H, Cerrillo JL, Meijerink MJ, Cavallo L, Rueping M, Castaño P. Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO 2 to Methanol: Activity and Selectivity Insights. Angew Chem Int Ed Engl 2024; 63:e202409490. [PMID: 39126183 DOI: 10.1002/anie.202409490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50 bar): 7.46 molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark J Meijerink
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Xie MJ, Li X, Li XX, Wen LH, Xie SL, Zhang KW, Duan YN, Zhang Y, Li D, Xia HD. Feedstock chemical dichloromethane as the C1 source for the chemoselective multicomponent synthesis of valuable 1,4,2-dioxazoles. Commun Chem 2024; 7:273. [PMID: 39572701 PMCID: PMC11582729 DOI: 10.1038/s42004-024-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The development of mild and practical strategies to produce value-added fine chemicals directly from inexpensive and readily available commodity chemicals is actively pursued by chemists. However, the application of feedstock chemical dichloromethane (DCM) as the C1 source in organic synthesis is still in its infancy. Herein, we describe a multicomponent strategy for the chemoselective synthesis of valuable 1,4,2-dioxazoles by using DCM as a C1 source. Critical to the success of this process is tuning of the type of nucleophiles to inhibit the easily-occurring side reactions. This approach features mild and simple conditions, excellent chemoselectivity, metal free, and broad substrate scope covering different types of nucleophiles. Furthermore, its synthetic utility is further demonstrated by the preparation of deuterated 1,4,2-dioxazoles, the late-stage functionalization of complex molecules and large-scale synthesis. Preliminary mechanistic studies indicate the dual roles of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as both a proton scavenger and a nucleophilic catalyst. This work provides not only a platform for DCM application, but also an excellent complementary strategy to the established 1,4,2-dioxazoles synthesis.
Collapse
Affiliation(s)
- Meng-Jun Xie
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xuan Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xin-Xin Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China
| | - Li-Hua Wen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Shu-Li Xie
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Ke-Wei Zhang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yao Zhang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Dong Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Hai-Dong Xia
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China.
| |
Collapse
|
8
|
Zhou Q, Wang J, Bian T, Liang Y, Yan W, Zhou L, Zhang Z. Pd-Catalyzed 1,4-Difluoromethylative Functionalization of 1,3-Dienes Using Freon-22. Org Lett 2024; 26:9091-9096. [PMID: 39404056 DOI: 10.1021/acs.orglett.4c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report a visible-light-driven, palladium-catalyzed 1,4-difluoromethylative functionalization of conjugated dienes using chlorodifluoromethane (ClCF2H, Freon-22) as a cost-effective difluoromethyl source. The excited palladium catalyst efficiently reduces the C-Cl bond, which generates a CF2H radical, followed by regioselective SN2' substitution to afford 1,4-difunctionalized products. This versatile, redox-neutral method accommodates diverse nucleophiles and exhibits broad functional group compatibility, making it suitable for late-stage functionalization in drug discovery and offering a direct route to difluoromethylated molecules.
Collapse
Affiliation(s)
- Qixin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Tiancen Bian
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Yan Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Weikang Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
9
|
Zhang TZ, Shen MQ, Zhang Q, Fu MC. Alcohols as Alkyl Electrophiles for Deoxygenative Heck Reaction Enabled by Excited State Pd Catalysis. Org Lett 2024; 26:8890-8898. [PMID: 39356970 DOI: 10.1021/acs.orglett.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Here, we present a general method for the photoinduced Pd-catalyzed deoxygenative Heck reaction of vinyl arenes with ortho-iodophenyl-thionocarbonate derived from alcohols. Mechanistic studies reveal that the deoxygenation involves a 5-endo-trig cyclization and fragmentation process, with radical addition identified as the rate-determining step in this transformation. This one-pot procedure demonstrates excellent selectivity for less hindered hydroxyl groups in diols, facilitating late-stage functionalization of complex molecules and scalability to gram-scale synthesis. The protocol highlights significant synthetic potential and can be extended to the cascade 1,1-difunctionalization of isocyanides and the intermolecular radical cascade cyclization of N-arylacrylamides.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Meng-Qi Shen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Fang CZ, Zhang BB, Tu YL, Liu Q, Wang ZX, Chen XY. Radical Replacement Process for Ligated Boryl Radical-Mediated Activation of Unactivated Alkyl Chlorides for C(sp 3)-C(sp 3) Bond Formation. J Am Chem Soc 2024; 146:26574-26584. [PMID: 39264946 DOI: 10.1021/jacs.4c10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The ligated boryl radical (LBR) has emerged as a potent tool for activating alkyl halides in radical transformations through halogen-atom transfer (XAT). However, unactivated alkyl chlorides still present an open challenge for this strategy. We herein describe a new activation mode of the LBR for the activation of unactivated alkyl chlorides to construct a C(sp3)-C(sp3) bond. Mechanistic studies reveal that the success of the protocol relies on a radical replacement process between the LBR and unactivated alkyl chloride, forming an alkyl borane intermediate as the alkyl radical precursor. Aided with the additive K3PO4, the alkyl borane then undergoes one-electron oxidation, generating an alkyl radical. The incorporation of the radical replacement activation model to activate unactivated alkyl chlorides significantly enriches LBR chemistry, which has been applied to activate alkyl iodides, alkyl bromides, and activated alkyl chlorides via XAT.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Yong-Liang Tu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
11
|
Wang XS, Zhang YJ, Cao J, Xu LW. Photoinduced Palladium-Catalyzed Radical Germylative Arylation of Alkenes with Chlorogermanes. J Org Chem 2024; 89:12848-12852. [PMID: 39145490 DOI: 10.1021/acs.joc.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We describe a visible light-induced palladium-catalyzed radical germylative arylation of alkenes with easily accessible chlorogermanes. This protocol provides expedient access to germanium-substituted indolin-2-ones in good to excellent yields under mild reaction conditions. The key step for this strategy lies in the reductive activation of germanium-chloride bonds with an excited palladium complex under visible light irradiation. The involvement of germanium radicals was evidenced by electron paramagnetic resonance spectroscopy experiments.
Collapse
Affiliation(s)
- Xue-Song Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yu-Jie Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
12
|
Ren J, Xia XF. Visible-light-induced alkyl-arylation of olefins via a halogen-atom transfer process. Org Biomol Chem 2024; 22:6370-6375. [PMID: 39046012 DOI: 10.1039/d4ob00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible-light-induced three-component 1,2-alkyl-arylation of alkenes and alkyl radical addition/cyclization of acrylamides have been realized via a photocatalytic halogen-atom transfer (XAT) process. This metal-free protocol utilizes readily available tertiary alkylamine as both an electron donor and an XAT reagent for the activation of alkyl halides using naphthalimide (NI)-based organic photocatalysts. This process features broad substrate scope and good functional group tolerance under mild conditions, and could be effectively applied to a variety of medicinally relevant substrates.
Collapse
Affiliation(s)
- Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
13
|
Du YJ, Sheng XX, Tang LN, Chen JM, Liu GY, Hu H, Yang S, Zhu L, Chen M. Accessing Benzoazepine Derivatives via Photoinduced Radical Relay Formal [5 + 2] Reaction of Amide/Alkyne Enabled by Palladium Catalysis. Org Lett 2024; 26:2662-2667. [PMID: 38530133 DOI: 10.1021/acs.orglett.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A novel class of alkyne-tethered amides facilitates an unprecedented photoinduced palladium-catalyzed radical relay formal [5 + 2] reaction. This innovative strategy allows for the rapid construction of diverse fused benzoazepine structures, yielding structurally novel and compelling compounds. With a broad substrate scope and excellent functional group tolerance, the methodology synthesizes biologically active compounds. Notably, the resulting tricyclic benzo[b]azepines offer diversification opportunities through simple transformations. DFT calculations elucidate a seven-membered ring closure mechanism involving the alkenyl radical and Pd(I) rebound alongside a concerted metalation-deprotonation (CMD) process.
Collapse
Affiliation(s)
- Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lei Zhu
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
14
|
Hou H, Ou W, Su C. Photochemical C(sp 3)-H Activation for Diversity-Oriented Synthesis of 3-Functionalized Oxindoles. J Org Chem 2024; 89:4120-4127. [PMID: 38439707 DOI: 10.1021/acs.joc.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Heteroatom-adjacent C(sp3) radical cyclization of N-arylacrylamides provides a straightforward pathway to synthesize valuable 3-functionalized oxindoles. Traditional cyclization reactions normally require harsh conditions or transition-metal catalysts. Here, we developed a metal-free, diversity-oriented synthesis of 3-functionalized oxindoles via photochemically induced selective cleavage of C(sp3)-H bonds. A variety of 3-substituted oxindoles with functionalities such as ethers, polyhalogens, benzyl, and formyl groups can be obtained by a rational design. This strategy is characterized by its simple operation and mild conditions, aligning well with the developmental requirements for sustainable chemistry. The gram-scale continuous-flow synthesis and efficient construction of bioactive molecules highlight its practical utility.
Collapse
Affiliation(s)
- Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
15
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
16
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
17
|
Al Zubaydi S, Onuigbo IO, Truesdell BL, Sevov CS. Cobalt-Catalyzed Electroreductive Alkylation of Unactivated Alkyl Chlorides with Conjugated Olefins. Angew Chem Int Ed Engl 2024; 63:e202313830. [PMID: 37963333 DOI: 10.1002/anie.202313830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Reactions of unactivated alkyl chlorides under mild and sustainable conditions are rare compared to those of alkyl bromides or iodides. As a result, synthetic methods capable of modifying the vast chemical space of chloroalkane reagents, wastes, and materials are limited. We report the cobalt-catalyzed reductive addition of unactivated alkyl chlorides to conjugated alkenes. Co-catalyzed activation of alkyl chlorides is performed under electroreductive conditions, and the resulting reactions constitute formal alkyl-alkyl bond formation. In addition to developing an operationally simple methodology, detailed mechanistic studies provide insights into the elementary steps of a proposed catalytic cycle. In particular, we propose a switch in the mechanism of C-Cl bond activation from nucleophilic substitution to halogen atom abstraction, which is critical for efficiently generating alkyl radicals. These mechanistic insights were leveraged in designing ligands that enable couplings of primary, secondary, and tertiary alkyl chlorides.
Collapse
Affiliation(s)
- Samir Al Zubaydi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Immaculata O Onuigbo
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Blaise L Truesdell
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Jha AK, Nair DP, Arif M, Yedase GS, Kuniyil R, Yatham VR. Redox-Neutral Radical Cascade Cyclization of N-Arylacrylamides with Unactivated Alkyl and Aryl Chlorides. J Org Chem 2023; 88:15389-15394. [PMID: 37874967 DOI: 10.1021/acs.joc.3c01904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, we report the first metal-free, redox-neutral strategy for radical cascade alkylative radical addition, cyclization of N-arylacrylamides with unactivated alkyl chlorides to give corresponding 3,3-disubstituted oxindoles in moderate to good yields. This transformation's salient features are the utilization of an organo photocatalyst, mild reaction conditions, and broad substrate scope. Moreover, this methodology is suitable for hetero cycle derived acrylamides and further allowed to utilize aryl chlorides for radical cyclization reaction. Finally, DFT studies allow us to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Dhananjay P Nair
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Munaifa Arif
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
19
|
Muralirajan K, Kancherla R, Maity B, Karuthedath S, Laquai F, Cavallo L, Rueping M. Mechanistic insights into excited-state palladium catalysis for C-S bond formations and dehydrogenative sulfonylation of amines. Nat Commun 2023; 14:6622. [PMID: 37857662 PMCID: PMC10587301 DOI: 10.1038/s41467-023-42392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Photocatalytic selective C(sp3)-H activation/cross-coupling reactions are appealing in organic synthesis. In this manuscript, we describe the development of photoexcited-state Pd-catalyzed dehydrogenative β-sulfonylation reactions using amines and aryl sulfonyl chlorides via intermolecular hydrogen atom transfer and C-S cross-coupling processes at room temperature. The transformation can be achieved by the direct generation of two distinct Pd-radical hybrid species and their capability to promote two different reactivities from Pd(0) and aryl sulfonyl chlorides, allowing for the efficient conversion of readily available amines into stable sulfonyl-substituted enamines at room temperature. The in-depth experimental, computational, and transient optical spectroscopic study and catalytic applications of a dehydrogenative functionalization event provide evidence for both static and dynamic quenching, as well as inner-sphere and outer-sphere mechanisms.
Collapse
Affiliation(s)
- Krishnamoorthy Muralirajan
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Safakath Karuthedath
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Jing Q, Qiao FC, Sun J, Wang JY, Zhou MD. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org Biomol Chem 2023; 21:7530-7534. [PMID: 37674373 DOI: 10.1039/d3ob01240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Carbamoyl-Hantzsch esters were used as carbamoyl radical precursors for oxidative carbamoylation of N-arylacrylamides and N-arylcinnamamides in the presence of inexpensive persulfates. This protocol can be applied to a broad range of substrates with various functional groups, providing a variety of 3,3-disubstituted oxindoles and 3,4-disubstituted dihydroquinolin-2(1H)-ones in moderate to good yields via an intermolecular addition/cyclization process.
Collapse
Affiliation(s)
- Qi Jing
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Fu-Ci Qiao
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jing-Yun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ming-Dong Zhou
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
21
|
Ji CL, Zhai X, Fang QY, Zhu C, Han J, Xie J. Photoinduced activation of alkyl chlorides. Chem Soc Rev 2023; 52:6120-6138. [PMID: 37555398 DOI: 10.1039/d3cs00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In recent years, the activation of unactivated alkyl chlorides through light-induced processes has emerged as a promising field in radical chemistry, and has led to new transformations in organic synthesis. Direct utilization of alkyl chlorides as C(sp3)-hybridized electrophiles enables the facile construction of carbon-carbon and carbon-heteroatom bonds. Furthermore, recent studies in medicinal chemistry indicate that their presence is associated with high levels of success in clinical trials. This review summarizes the recent advances in the photoinduced activation of unactivated alkyl chlorides and discusses the mechanistic aspects underlying these reactions. We anticipate that this review will serve as a valuable resource for researchers in the field of unactivated chemical bond functionalization, and inspire considerable developments in organic chemistry, drug synthesis, materials science and other related disciplines.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qing-Yun Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
22
|
Bag S, Ojha S, Venugopalan S, Sahoo B. Photocatalytic Alkylation/Arylative Cyclization of N-Acrylamides of N-Heteroarenes and Arylamines with Dihydroquinazolinones from Unactivated Ketones. J Org Chem 2023; 88:12121-12130. [PMID: 37515554 DOI: 10.1021/acs.joc.3c01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We describe a visible-light photoredox-catalyzed alkylation/arylative cyclization of N-acrylamides─from 2-arylindoles, 2-arylbenzimidazoles, or N-substituted anilines─with ketone-derived dihydroquinazolinones, accessing indolo- and benzimidazolo[2,1-a]isoquinolines or 2-oxindoles. The consecutive incorporation of alkyl- and aryl-carbogenic motifs across a C=C bond via formal cleavage of ketone α-C-C and arene C-H bonds leads to the formation of five- and six-membered rings, with an all-carbon quaternary stereocenter. This dicarbofunctionalization elaborates aromatization-driven radical C-C functionalization of unactivated aliphatic ketones to construct diverse cyclic structures with functionality tolerance.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Shubham Ojha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| |
Collapse
|
23
|
Shaw R, Sihag N, Jain S, Sharma R, Yadav MR. Photoinduced Alkyl/Aryl Radical Cascade for the Synthesis of Quaternary CF 3-Containing Oxindoles and Indoline Alkaloids. J Org Chem 2023; 88:5652-5660. [PMID: 37068047 DOI: 10.1021/acs.joc.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Metal- and additive-free, photoinduced decarboxylative radical alkylation-cyclization of CF3-acrylamides with alkyl redox-active esters provided the corresponding quaternary CF3-oxindole derivatives in good yields. Notably, diaryliodonium salts also efficiently participated in the arylation-cyclization of CF3-acrylamides in environmentally benign H2O as a solvent. The present approach has been extended for the concise synthesis of CF3-attached indoline alkaloid analogues, i.e., CF3-(±)-desoxyeseroline, CF3-(±)-esermethole, and CF3-(±) progesterone receptor antagonists. The preliminary mechanistic studies revealed that the reaction is likely to proceed through initial photoexcitation of redox-active ester/diaryliodonium salts followed by the SET process with acrylamide.
Collapse
Affiliation(s)
- Ranjay Shaw
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Sihag
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swati Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ruchi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - M Ramu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Dong DQ, Tian BL, Yang H, Wei ZH, Yang SH, Zhou MY, Ding CZ, Wang YL, Gao JH, Wang SJ, Yang WC, Liu BT, Wang ZL. Visible light induced palladium-catalyzed reactions involving halogenated hydrocarbon (RX). MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
25
|
Upreti GC, Singh T, Khanna K, Singh A. Pd-Catalyzed Photochemical Alkylative Functionalization of C═C and C═N Bonds. J Org Chem 2023; 88:4422-4433. [PMID: 36930049 DOI: 10.1021/acs.joc.2c03028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The development of excited-state palladium-catalyzed alkylative cyclization of acrylamides and the alkylation of quinoxalinones is described. The application of a variety of primary, secondary, and tertiary unactivated alkyl halides as alkyl radical precursors and the use of a simple catalyst system are the highlights of this reactivity manifold. The reactions exhibit wide scope, occur under mild conditions, and furnish the products in excellent yields.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kirti Khanna
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
26
|
Wang C, Azofra LM, Dam P, Espinoza-Suarez EJ, Do HT, Rabeah J, Brückner A, El-Sepelgy O. Photoexcited cobalt catalysed endo-selective alkyl Heck reaction. Chem Commun (Camb) 2023; 59:3862-3865. [PMID: 36883973 DOI: 10.1039/d2cc06967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Herein, we report an intramolecular endo-selective Heck reaction of iodomethylsilyl ethers of phenols and alkenols. The reaction leads to the formation of seven- and eight-membered siloxycycles in excellent yields, which could be further converted into the corresponding allylic alcohols upon oxidation. Thus, this method could be used for the selective (Z)-hydroxymethylation of o-hydroxystyrenes and alkenols. Rapid scan EPR experiments and DFT calculations suggest a concerted β-hydrogen elimination event to take place in the triplet state.
Collapse
Affiliation(s)
- Chenyang Wang
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, Las Palmas de Gran Canaria 35017, Spain
| | - Phong Dam
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | | | - Hieu Trung Do
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Jabor Rabeah
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Angelika Brückner
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Osama El-Sepelgy
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| |
Collapse
|
27
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
28
|
Liu D, Zhao Y, Patureau FW. NaI/PPh 3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles. Beilstein J Org Chem 2023; 19:57-65. [PMID: 36741816 PMCID: PMC9874234 DOI: 10.3762/bjoc.19.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
A practical NaI/PPh3-catalyzed decarboxylative radical cascade cyclization of N-arylacrylamides with redox-active esters is described, which is mediated by visible light irradiation. A wide range of substrates bearing different substituents and derived from ubiquitous carboxylic acids, including α-amino acids, were synthesized and examined under this very mild, efficient, and cost effective transition-metal-free synthetic method. These afforded various functionalized oxindoles featuring a C3 quaternary stereogenic center. Mechanistic experiments suggest a radical mechanism.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
29
|
Chen L, Jiang K, Zeng G, Yin B. Photoinduced Pd-Catalyzed C sp2–H/C sp3–H Dehydrocoupling Reaction Employing Polyhaloaromatics as the Dehydrogenating Agent. Org Lett 2022; 24:9071-9075. [DOI: 10.1021/acs.orglett.2c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Kai Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Guohui Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Biaolin Yin
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| |
Collapse
|
30
|
Yang S, Fan H, Xie L, Dong G, Chen M. Photoinduced Desaturation of Amides by Palladium Catalysis. Org Lett 2022; 24:6460-6465. [PMID: 36040045 DOI: 10.1021/acs.orglett.2c02594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced palladium-catalyzed desaturation method that is suitable for converting the linear amides to their α,β-unsaturated counterparts is reported. The reaction does not require strong base/acid or sulfur/selenium and oxidant reagents and can be carried out at room temperature through a simple one-step operation. The protocol exhibits great scalability and functional group tolerance. The reaction mechanism has been investigated through deuterium labeling experiments, radical clock, radical capture, and kinetic studies. Mechanistic studies suggested a radical pathway involving aryl/alkyl Pd-radical intermediates.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huike Fan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Licheng Xie
- Huaide College, Changzhou University, Jingjiang 214513, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
31
|
Pei C, Yang Z, Koenigs RM. Photochemical palladium-catalyzed methylation and alkylation reactions in cascade reactions of isonitriles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Oku N, Murakami M, Miura T. Photoassisted Cross-Coupling Reaction of α-Chlorocarbonyl Compounds with Arylboronic Acids. Org Lett 2022; 24:1616-1619. [PMID: 35191697 DOI: 10.1021/acs.orglett.2c00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Suzuki-Miyaura cross-coupling reaction of α-chloroacetates or α-chloroacetamides with arylboronic acids is made possible by visible-light irradiation. This reaction provides a useful method for the synthesis of α-arylacetates and α-arylacetamides from chlorides under mild reaction conditions. An indole-3-acetic acid derivative that is the key intermediate of the plant hormone auxin can be synthesized from 1-Boc-indole in two steps by combining an iridium-catalyzed C-H borylation and a palladium-catalyzed cross-coupling reaction.
Collapse
Affiliation(s)
- Naoki Oku
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Chen S, Van Meervelt L, Van der Eycken EV, Sharma UK. Visible-Light-Driven Palladium-Catalyzed Radical Tandem Dearomatization of Indoles with Unactivated Alkenes. Org Lett 2022; 24:1213-1218. [PMID: 35107015 DOI: 10.1021/acs.orglett.1c04390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild visible-light-driven palladium-catalyzed radical tandem dearomatization of indoles with unactivated alkenes is described with moderate to good yields and good to excellent diastereoselectivities. Under visible-light irradiation, the photoexcited state of the palladium complex was formed, which could transfer a single electron to N-(2-bromobenzoyl)indoles, leading to a hybrid palladium radical chemistry. This provides efficient and atom-economical access to diverse 2,3-disubstituted indoline derivatives.
Collapse
Affiliation(s)
- Su Chen
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,People's Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, RU-117198 Moscow, Russia
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
34
|
Kancherla R, Muralirajan K, Rueping M. Excited-state palladium-catalysed reductive alkylation of imines: scope and mechanism. Chem Sci 2022; 13:8583-8589. [PMID: 35974758 PMCID: PMC9337745 DOI: 10.1039/d2sc02363f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Palladium catalysis induced by visible-light irradiation is a promising tool for promoting unusual chemical reactivity. Here, the hybrid alkyl radical/Pd(i) species generated is used to promote the reductive alkylation of imines.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
Sun Z, Huang H, Wang Q, Huang C, Mao G, Deng GJ. Visible light-mediated radical-cascade addition/cyclization of arylacrylamides with aldehydes to form quaternary oxindoles at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00319h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The visible light-induced oxidative radical cascade coupling of N-arylacrylamides with aldehydes using bromide as the hydrogen atom transfer agent to synthesize functional oxindoles is described.
Collapse
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
36
|
Ishikawa T, Murata M, Masai H, Iwai T, Terao J. Irradiation with UV Light Accelerates the Migita–Kosugi–Stille Coupling Reaction in Air. CHEM LETT 2021. [DOI: 10.1246/cl.210665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takumi Ishikawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Mako Murata
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tomohiro Iwai
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
37
|
Wei D, Li X, Shen L, Ding Y, Liang K, Xia C. Phenolate anion-catalyzed direct activation of inert alkyl chlorides driven by visible light. Org Chem Front 2021. [DOI: 10.1039/d1qo01128f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A photochemical activation of inert alkyl chlorides catalyzed by phenolate anions was developed for C–O bond formation, dehalogenation, and cyclization under mild conditions.
Collapse
Affiliation(s)
- Delian Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xipan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|