1
|
Tokuda T, Kuranaga T, Minote M, Suo T, Ikeda H, Pan C, Kakeya H. Structural Elucidation using Highly Sensitive Labeling Reagents and Total Synthesis of Amoxetamide A, a New Anoikis Inducer. Chemistry 2025; 31:e202500357. [PMID: 40016163 DOI: 10.1002/chem.202500357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Amoxetamide A is a new anoikis inducer identified in the combined-culture broth of Amycolatopsis sp. 26-4 and Tsukamurella pulmonis TP-B0596. Although its planar structure has been determined through extensive NMR studies, its stereochemical structure remains to be elucidated due to the limited amounts of available samples. Herein, we report its stereochemical determination using our original labeling reagents and chemical synthesis, which was realized by consuming trace amount (ca 10 μg) of natural sample. Moreover, the total synthesis of amoxetamide A is reported. Undesired intramolecular cyclization of an intermediate accelerated by the Thorpe-Ingold effect was completely avoided by using acyl sulfonamide as a protecting group of carboxylic acid. This first total synthesis of amoxetamide A enabled the confirmation of its stereochemistry and anoikis inducing activity.
Collapse
Grants
- 17H06401, 19H02840, 22H04901, 23H04882, 24H00493 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- 22K05112 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- JP24ama221540, JP24ama121034 the Japan Agency for Medical Research and Development (AMED)
- JP24ama221540, JP24ama121034 the Japan Agency for Medical Research and Development (AMED), Japan
Collapse
Affiliation(s)
- Tensei Tokuda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mayuri Minote
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taiki Suo
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Kuranaga T, Koyama A, Asano J, Matsumoto T, Kakeya H. Twisted Amide-Mediated Synthesis and Rapid Structure-Activity Relationship Study of Medium-Sized Cyclic Peptides. Chemistry 2025; 31:e202500331. [PMID: 40000398 DOI: 10.1002/chem.202500331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Medium-sized cyclic peptides are expected to be ideal drug leads because these peptides combine the advantages, while compensating for the disadvantages, of small molecules and antibodies. Although medium-sized peptides can be produced by chemical synthesis, two major problems, namely (i) Cα-epimerization during C-terminal modification and (ii) side reactions in the cyclization, remain to be solved. These issues have hampered the synthesis of pure materials for bioassays, making it difficult to accomplish accurate structure-activity relationship (SAR) studies. Herein, we report an efficient synthesis of medium-sized cyclic peptides based on the twisted amide-mediated amidation strategy. First, a variety of linear peptides were synthesized by the "inverse" peptide synthesis and fragment coupling. Second, the C-terminus of the linear peptides were converted to twisted amides, which were then reacted with a variety of α-amino acyl sulfonamides, realizing the rapid C-terminal diversification of peptides. Finally, the resulting linear peptides were cyclized by the intramolecular twisted amide-mediated amidation to afford stereochemically pure cyclic peptides. Using this strategy, total synthesis of acyl-surugamide A, the stereoselective synthesis of 13 non-natural analogs, and the discovery of potent antimicrobial/antifungal peptides beyond the natural product were also achieved.
Collapse
Grants
- 17H06401, 19H02840, 22H04901, 23H04882, 24H00493 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- 22K05112 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- 24ama221540h0001, 24ama121034j0003 the Japan Agency for Medical Research and Development (AMED), Japan
- Takeda Science Foundation
- Tokyo Biochemical Research Foundation
- the foundation of Tokyo Chemical Industry
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ai Koyama
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junta Asano
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takumi Matsumoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Koyama A, Kuranaga T, Suo T, Morimoto R, Matsumoto T, Kakeya H. Twisted Amide-Mediated Peptide Synthesis. Chemistry 2024; 30:e202403288. [PMID: 39333757 DOI: 10.1002/chem.202403288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/30/2024]
Abstract
A robust, practical, and sustainable isomerization-suppressed peptide bond formation via acyl sulfonamide, a twisted amide, is disclosed. Tosyl isocyanate and pentafluorobenzyl bromide were applied in combination to activate the peptide C-terminus, which then reacted with an amine to yield an elongated peptide with high stereochemical purity. Careful analysis of NMR spectra of the active intermediate revealed the presence of an intramolecular hydrogen bond, suggesting that the hydrogen bond suppressed Cα-epimerization during amidation. The isomerization suppression by the intramolecular hydrogen bond is expected to be effective even under high dilution conditions, making the present method a powerful tool for the synthesis of complex macrocyclic peptides. In addition to peptide synthesis, the developed synthetic entry to twisted amides can be applied to the investigation of transition metal-catalyzed N-C bond activation. Moreover, the application to the N-C bond activation returned insight into peptide synthesis, leading to the use of sulfonamide as a protecting group of carboxylic acid that can be orthogonally removed in the presence of other conventional protecting groups.
Collapse
Grants
- 17H06401, 19H02840, 22H04901, 23H04882, 24H00493 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 22K05112 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 24ama221540h0001, 24ama121034j0003 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Ai Koyama
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taiki Suo
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryota Morimoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takumi Matsumoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Kuranaga T. Total syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. J Nat Med 2023; 77:1-11. [PMID: 36348140 PMCID: PMC9810689 DOI: 10.1007/s11418-022-01662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Peptidic natural products have received much attention as potential drug leads, and biosynthetic studies of peptidic natural products have contributed to the field of natural product chemistry over the past several decades. However, the key biosynthetic intermediates are generally not isolated from natural sources, and this can hamper a detailed analysis of biosynthesis. Furthermore, reported unusual structures, which are targets for biosynthetic studies, are sometimes the results of structural misassignments. Chemical synthesis techniques are imperative in solving these problems. This review focuses on the chemical syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. These studies can provide the key biosynthetic intermediates that can reveal the biosynthetic pathways and/or true structures of these natural products.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Kimishima A, Ando H, Sennari G, Noguchi Y, Sekikawa S, Kojima T, Ohara M, Watanabe Y, Inahashi Y, Takada H, Sugawara A, Matsumaru T, Iwatsuki M, Hirose T, Sunazuka T. Chemical Degradation-Inspired Total Synthesis of the Antibiotic Macrodiolide, Luminamicin. J Am Chem Soc 2022; 144:23148-23157. [DOI: 10.1021/jacs.2c10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aoi Kimishima
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyasu Ando
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Goh Sennari
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiko Noguchi
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shogo Sekikawa
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toru Kojima
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Motoyoshi Ohara
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirokazu Takada
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akihiro Sugawara
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takanori Matsumaru
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
6
|
Matsumoto T, Kuranaga T, Taniguchi Y, Wang W, Kakeya H. Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A. Beilstein J Org Chem 2022; 18:1560-1566. [DOI: 10.3762/bjoc.18.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Longicatenamides A–D are cyclic hexapeptides isolated from the combined culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Because these peptides are not detected in the monoculture broth of the actinomycete, they are key tools for understanding chemical communication in the microbial world. Herein, we report the solid-phase total synthesis and structural confirmation of longicatenamide A. First, commercially unavailable building blocks were chemically synthesized with stereocontrol. Second, the peptide chain was elongated via Fmoc-based solid-phase peptide synthesis. Third, the peptide chain was cyclized in the solution phase, followed by simultaneous cleavage of all protecting groups to afford longicatenamide A. Chromatographic analysis corroborated the chemical structure of longicatenamide A. Furthermore, the antimicrobial activity of synthesized longicatenamide A was confirmed. The developed solid-phase synthesis is expected to facilitate the rapid synthesis of diverse synthetic analogues.
Collapse
|
7
|
He C, Sun X, Huang Z, Wang Z, Luo X, Song J, Wang X, Zhao J, Xiang W. Saccharothrix luteola sp. nov., a novel cellulose-degrading actinobacterium isolated from soil and emended description of the genus Saccharothrix. Int J Syst Evol Microbiol 2022; 72. [PMID: 36268867 DOI: 10.1099/ijsem.0.005572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A novel cellulose-degrading actinobacterium, designated strain NEAU-S10T, was isolated from soil collected from Chifeng, Inner Mongolia Autonomous Region, PR China, and characterized using a polyphasic approach. Pairwise similarity of the 16S rRNA gene sequence showed that strain NEAU-S10T was a representative of Saccharothrix and was closely related to Saccharothrix carnea NEAU-yn17T (99.2 %), Saccharothrix saharensis SA152T (99.0 %), Saccharothrix texasensis DSM 44231T (98.5 %) and Saccharothrix xinjiangensis NBRC 101911T (98.5 %). Physiological and chemotaxonomic characteristics of the strain further supported its affiliation to the genus Saccharothrix. The whole-cell sugars contained galactose, ribose and mannose. The polar lipids contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinones were MK-9(H0), MK-9(H2), MK-9(H4) and MK-10(H4). The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The genomic DNA G+C content was 71.8 mol%. The levels of digital DNA-DNA hybridization between isolate and S. carnea NEAU-yn17T, S. saharensis SA152T and S. texasensis DSM 44231T were 40.1 % (37.6-42.6 %), 38.soap8 % (36.3-41.3 %) and 44.8 % (42.2-47.3 %) and the ANI values between them were determined to be 90.2, 89.8 and 91.7 %, the results indicated that strain NEAU-S10T could be distinguished from its reference strains. The assembled genome sequence of strain NEAU-S10T was found to be 10 305 394 bp long. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed 8 994 protein-coding genes. Genomic analysis and Congo red staining test indicated that strain NEAU-S10T had the potential to degrade cellulose. The genomic and phenotypic results indicate that strain NEAU-S10T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix luteola sp. nov. is proposed, with NEAU-S10T (=CCTCC AA 2020037T=JCM 34800T) as the type strain.
Collapse
Affiliation(s)
- Chuan He
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zhenzhen Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zishan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xianxian Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|