1
|
Kumar S, Sharma A, Kumar R, Sharma A. Visible Light-Induced Energy Transfer Mediated Regioselective C-3 Thiolation of Imidazoheterocycles using Bunte Salts. Chem Asian J 2025:e202401875. [PMID: 40053470 DOI: 10.1002/asia.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/09/2025]
Abstract
An external-photocatalyst-free visible light-induced regioselective C-3 sulfenylation of imidazo[1,2-a]pyridines using Bunte salts has been accomplished via C(sp2)-H functionalization. This protocol allows the coupling of a wide range of imidazoheterocycles with alkyl-, benzyl-, and aryl Bunte salts under ambient air as the sole oxidant. The radical scavenging, UV-visible spectroscopic studies, and Stern-Volmer experiments revealed that the reaction occurs through energy transfer followed by a radical SET pathway. In this work, the dual role of imidazopyridines as photoexciting species and as energy transfer vehicle is proposed. Activation of the triplet oxygen as a result of energy transfer, which acts on somophlic Bunte salts to generate thiyl radical, eventually resulting in the C(sp2)-H functionalization.
Collapse
Affiliation(s)
- Sehdev Kumar
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India-, 247667
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India-, 247667
| | - Raman Kumar
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India-, 247667
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India-, 247667
| |
Collapse
|
2
|
Kong Y, Gong M, Xu X, Wu Y, Jiang X. An efficient direct electrolysis method for the synthesis of 1,1,1,3,3,3-hexafluoroisopropyxy substituted imidazo[1,2- a]pyridines. Org Biomol Chem 2025; 23:2190-2194. [PMID: 39869101 DOI: 10.1039/d4ob02073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-a]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-a]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-a]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
Collapse
Affiliation(s)
- Yanyan Kong
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ming Gong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xuemei Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xingmao Jiang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| |
Collapse
|
3
|
Jo W, Thangsrikeattigun C, Ryu C, Han S, Oh C, Baik MH, Cho SH. Regiodivergent Alkylation of Pyridines: Alkyllithium Clusters Direct Chemical Reactivity. J Am Chem Soc 2025. [PMID: 40009550 DOI: 10.1021/jacs.4c17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Regiodivergent C-C bond-forming reactions are a powerful tool for constructing diverse molecular architectures from common precursors. While transition metal catalysis has dominated regioselective transformations, achieving similar precision with transition-metal-free methods remains an unmet challenge, particularly when using identical starting materials. In this work, we report a transition-metal-free, regiodivergent direct alkylation of electronically unbiased pyridines using 1,1-diborylalkanes as the sole alkylating agent. The key to controlling regioselectivity lies in the choice of alkyllithium activator of 1,1-diborylalkanes: methyllithium directs alkylation predominantly to the C4 position, while sec-butyllithium promotes C2-alkylation. Mechanistic studies reveal that the structural dynamics of alkyllithium clusters dictate the regioselectivity, with tetrameric clusters favoring C4-alkylation and dimeric clusters preferring C2-alkylation. This method demonstrates broad substrate scope, enables late-stage functionalization of complex molecules, and allows for the sequential installation of two distinct alkyl groups onto a pyridine scaffold. Our approach provides a versatile tool for site-selective pyridine functionalization, offering new possibilities for synthesizing diverse alkylated pyridines in pharmaceutical and materials research.
Collapse
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chattawat Thangsrikeattigun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changsu Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Ghosh S, Khandelia T, Panigrahi P, Mandal R, Patel BK. Deciphering Co(III)-Catalyzed Oxidative C-H/C-H Annulation Towards Maleimide-Fused Imidazopyridine AEEgens. Chemistry 2025; 31:e202403576. [PMID: 39620910 DOI: 10.1002/chem.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/13/2024]
Abstract
A cobalt(III)-catalyzed dual C(sp2)-H/C(sp2)-H activation of 2-arylimidazopyridines and its annulation with N-substituted maleimides leads to polycyclic aromatic heterocycles. This sustainable oxidative annulation uses earth-abundant, less toxic, and cost-effective cobalt(III) catalyst that complement expensive 2nd and 3rd-row metals. This oxidative annulation features a broad substrate scope with very good functional group tolerance. These maleimide-fused imidazopyridines display strong fluorescence in the region of 527- 536 nm with a Stokes shift of 83-87 nm and possess an excited state lifetime of 14.6-16.1 ns. Interestingly, such luminescent compounds show aggregation-enhanced emission (AEE) behavior in the iPr-OH/hexane mixed solvent system. Furthermore, field emission scanning microscopy (FESEM) reveals their spherical nano-aggregates with an average diameter of ~216.8 nm. They can also be used as cellular-imaging and picric acid-sensing probes.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Tamanna Khandelia
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pritishree Panigrahi
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Raju Mandal
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bhisma K Patel
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
5
|
Aslam M, Akhtar MS, Lim HN, Seo JH, Lee YR. Recent advances in the transformation of maleimides via annulation. Org Biomol Chem 2025; 23:269-291. [PMID: 39545834 DOI: 10.1039/d4ob01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the past five years, maleimide scaffolds have gained considerable attention in organic synthesis for their role in forming cyclized molecules through annulation and C-H activation. As versatile and reactive coupling agents, maleimides have enabled the efficient synthesis of various cyclized products, including annulation, benzannulation, cycloaddition, and spirocyclization, with applications in medicinal chemistry, drug discovery, and materials science. Despite the extensive study of maleimide chemistry, certain reactions-such as cycloaddition-based annulation, photoannulation, and electrochemical transformations-remain underexplored despite their promising potential in the pharmaceutical and chemical industries. Recent advancements, such as photocatalysis and electrochemical methods, have expanded the utility of maleimides, providing more sustainable and selective approaches for synthesizing complex molecules. This review compiles research published between 2019 and 2024, highlighting the substrate scope, reaction diversity, and industrial relevance of maleimide-based annulation strategies. Additionally, we discuss emerging trends and future directions in maleimide chemistry, exploring opportunities for novel reaction pathways and broader applications in synthetic biology and materials science.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Kumari V, Acharya SS, Mondal N, Choudhury LH. Maleimide-Dependent Rh(III)-Catalyzed Site-Selective Mono and Dual C-H Functionalization of 2-Arylbenzo[ d]thiazole and Oxazole Derivatives. J Org Chem 2024; 89:18003-18018. [PMID: 39625337 DOI: 10.1021/acs.joc.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The site-selective functionalization of aromatic compounds via C-H activation has emerged as a popular tool in organic synthesis. In this study, we report a regioselective coupling of maleimide to 2-arylbenzo[d]thiazoles in the presence of a rhodium(III) catalyst. Depending upon the nature of the substituent (R2-group) present in the maleimide substrate, either mono- or bis-1,4-addition products were observed in this methodology. In the case of R2 = aryl, cyclohexyl, and tert-butyl, mono coupling was observed, whereas substituents, such as methyl, ethyl, benzyl, and methyl thiophene, provided bis coupling as the major products. Similar selectivity was also observed in the case of 2-arylbenzo[d]oxazoles.
Collapse
Affiliation(s)
- Vidya Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Swadhin Swaraj Acharya
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Nurabul Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| |
Collapse
|
7
|
Khandelia T, Panigrahi P, Ghosh S, Mandal R, Doley B, Patel BK. Solvent Dictated Organic Transformations. Chem Asian J 2024; 19:e202400603. [PMID: 39509646 DOI: 10.1002/asia.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Solvent plays an important role in many chemical reactions. The C-H activation has been one of the most powerful tools in organic synthesis. These reactions are often assisted by solvents which not only provide a medium for the chemical reactions but also facilitate reaching to the product stage. The solvent helps the reaction profile both chemically and energetically to reach the targeted product. Organic transformations via C-H activation from the solvent assistance perspective has been discussed in this review. Various solvents such as tetrahydrofuran (THF), MeCN, dichloromethane (DCM), dimethoxyethane (DME), 1,2-dichloroethane (1,2-DCE), dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropyl nitrile (iPrCN), 1,4-dioxane, AcOH, trifluoroacetic acid (TFA), Ac2O, PhCF3, chloroform (CHCl3), H2O, N-methylpyrrolidone (NMP), acetone, methyl tert-butyl ether (MTBE), toluene, p-xylene, alcohols, MeOH, 1,1,1-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), tert-amyl alcohol and their roles are discussed. The exclusive role of the solvent in various transformations has been deliberated by highlighting the substrate scope, along with the proposed mechanisms. For easy classification, the review has been divided into three parts: (i) solvent-switched divergent C-H activation; (ii) C-H bond activation with solvent as the coupling reagent, and (iii) C-H activation with solvent caging and solvent-assisted electron donor acceptor (EDA) complex formation and autocatalysis.
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Barlina Doley
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
8
|
Gola AK, Dubey A, Pandey SK. Mn(I)-Catalyzed Site-Selective C-H Activation: Unlocking Access to 3-Arylated Succinimides from 2-Arylpyridines and Maleimides. J Org Chem 2024; 89:15020-15025. [PMID: 39378297 DOI: 10.1021/acs.joc.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An efficient and cost-effective Mn(I)-catalyzed site-selective C-H activation of 2-arylpyridines with maleimides has been described. This approach facilitates the synthesis of 3-arylated succinimide derivatives with high site selectivity, chemoselectivity, catalytic efficiency, and outstanding tolerance to numerous functional groups. The practicality of this approach is further evidenced by its successful application in large-scale reactions and the conversion of the synthesized succinimide derivatives into other valuable compounds.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhishek Dubey
- Department of Chemistry, R. J. College, A constituent Unit of J. P. University, Chapra 841 301, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
9
|
Shao A, Li Y, Ding Y, Li Y, Wu S, Jiang Y, Dong M, Wu H, Chen S. Photoredox-Cobaloxime Catalysis for Selective Oxidative Dehydrogenative [4+2] Annulation of Imidazo-Fused Heterocycles with Alkenes. Org Lett 2024; 26:2529-2534. [PMID: 38513218 DOI: 10.1021/acs.orglett.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A selective oxidative [4+2] annulation of alkenes with imidazo-fused heterocycles has been developed by using the synergistic combination of photoredox and cobaloxime catalysts. It allows facile access to various imidazole-fused polyaromatic scaffolds accompanied by H2 evolution. This protocol features high regioselectivity as well as a broad substrate scope. Detailed mechanistic studies indicate that twice the electron/H transfer processes facilitated by this catalytic system achieve the annulation π-extension of imidazo-fused heterocycles with alkenes.
Collapse
Affiliation(s)
- Ailong Shao
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuanyuan Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuxue Ding
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yahui Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shulian Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuan Jiang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Min Dong
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Hai Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shuisheng Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
10
|
Mandal R, Ghosh S, Khandelia T, Panigrahi P, Patel BK. Base-Induced Decarboxylative 1,1-Alkoxy Thiolation via Hydrothiolation of Vinylene Carbonate. J Org Chem 2023; 88:16655-16660. [PMID: 37964434 DOI: 10.1021/acs.joc.3c02036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A base-mediated 1,1-difunctionalization of vinylene carbonate has been achieved using two different nucleophiles, namely, thiol and alcohol, with the assistance of air (O2). In alcoholic solvents, decarboxylation occurs at room temperature to provide a 1,1-difunctionalized product, where vinylene carbonate serves as an ethynol (C2) synthon in this three-component reaction. On the other hand, in acetonitrile, exclusive hydrothiolation occurs under the basic conditions at room temperature. This method offers a one-pot decarboxylative regioselective difunctionalization of vinylene carbonate at room temperature for the construction of α-alkoxy-β-hydroxy sulfide.
Collapse
Affiliation(s)
- Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Khandelia T, Ghosh S, Panigrahi P, Mandal R, Boruah D, Patel BK. Photo-induced 1,2-thiohydroxylation of maleimide involving disulfide and singlet oxygen. Chem Commun (Camb) 2023; 59:11196-11199. [PMID: 37650219 DOI: 10.1039/d3cc03296e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A visible light-driven di-functionalization of maleimide with disulfide and in situ-generated singlet oxygen offers selective 1,2-thiohydroxylation under additive-free conditions. Here the disulfide plays the dual role of photosensitizer and the coupling reagent. Notably, the hydroxyl functionality originates from the in situ generated singlet oxygen followed by HAT from H2O (moisture).
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Deepjyoti Boruah
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Panigrahi P, Ghosh S, Khandelia T, Mandal R, Patel BK. Isoxazole as a nitrile synthon: en routes to the ortho-alkenylated isoxazole and benzonitrile with allyl sulfone catalyzed by Ru(II). Chem Commun (Camb) 2023; 59:10536-10539. [PMID: 37565340 DOI: 10.1039/d3cc02996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A Ru(II) catalyzed regioselective Heck-type C-H olefination of isoxazole with unactivated allyl phenyl sulfone is revealed. The solvent DCM offers dual sp2-sp2 C-H activation via an N-directed strategy, leading to ortho-olefinated isoxazoles with exclusive E-selectivity. On the other hand, in DCE solvent, isoxazole serves as the nitrile synthon and leads to o-olefinated benzonitrile. At a higher temperature (110 °C) in DCE, after the ortho-olefination Ru(II) mediated cleavage of isoxazoles delivered the nitrile functionality.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
13
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
14
|
Murugesan T, Elikkottil A, Kaliyamoorthy A. Palladium-Catalyzed Regioselective C3-Allylic Alkylation of 2-Aryl Imidazopyridines with MBH Carbonates. J Org Chem 2023; 88:2655-2665. [PMID: 36719167 DOI: 10.1021/acs.joc.2c03001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Imidazopyridine is an important framework that constitutes several pharmaceutical drugs and biologically active molecules. Herein, we present the palladium-catalyzed regioselective C3-allylic alkylation of 2-aryl imidazopyridines with MBH carbonates. This strategy furnishes a broad spectrum of C3-allylated imidazopyridines, and their structures have been unequivocally established using X-ray analysis. Besides, the reaction can be easily scaled up on a gram scale, and the ensuing product can be smoothly manipulated into synthetically useful entities.
Collapse
Affiliation(s)
- Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Afna Elikkottil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
15
|
Khandelia T, Ghosh S, Patel BK. Dearomative bis-functionalization of quinoxalines and bis- N-arylation of (benz)imidazoles via Cu(II)-mediated addition of boronic acids. Chem Commun (Camb) 2023; 59:2118-2121. [PMID: 36723297 DOI: 10.1039/d2cc06399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Cu(OTf)2-mediated regioselective dearomative aryl-hydroxylation across the C(sp2)N bond of 2-aryl quinoxalines and bis-N-arylation of (benz)imidazoles were developed using aryl boronic acids. For the dearomative aryl-hydroxylation, the C-center should be electrophilic (ca. 0.08), the N-center nucleophilic (ca. -0.50), and the C(sp2)N bond polarized (Δe = 0.609).
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| |
Collapse
|
16
|
Dhara HN, Rakshit A, Alam T, Sahoo AK, Patel BK. Visible-Light-Mediated Solvent-Switched Photosensitizer-Free Synthesis of Polyfunctionalized Quinolines and Pyridines. Org Lett 2023; 25:471-476. [PMID: 36637219 DOI: 10.1021/acs.orglett.2c04027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A solvent (2,2,2-trifluoroethanol (TFE) vs ethyl alcohol (EtOH)) switched synthesis of quinolines and pyridines is illustrated from (E)-2-(1,3-diphenylallylidene)malononitriles via a Pd(II)-catalyzed photochemical process. The active catalyst [L2Pd(0)] generated serves as an exogenous photosensitizer. The process offers predominantly Z-alkenylated quinolines and pyridines in TFE and EtOH, respectively. Furthermore, large-scale synthesis and a few interesting post-synthetic modifications have been demonstrated.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
17
|
Zeng C, He Y, Li Q, Dong L. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
18
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
19
|
Das B, Dahiya A, Sahoo AK, Patel BK. Transformable Transient Directing Group-Assisted C(sp 2)–H Activation: Synthesis and Late-Stage Functionalizations of o-Alkenylanilines. J Org Chem 2022; 87:13383-13388. [DOI: 10.1021/acs.joc.2c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
20
|
Ruthenium (II) catalysed regioselective C-2ʹ-alkenylation of 2-phenylimidazo[1,2-a]pyridine-3-carbaldehydes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
22
|
Das KK, Ghosh AK, Hajra A. Late-stage ortho-C-H alkenylation of 2-arylindazoles in aqueous medium by Manganese(i)-catalysis. RSC Adv 2022; 12:19412-19416. [PMID: 35865587 PMCID: PMC9251645 DOI: 10.1039/d2ra03547b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity. The reaction proceeds through the control of C3 nucleophilicity of 2-aryl indazoles. This method is applied to the late-stage functionalization of complex molecules including ethinylestradiol, norethisterone, and N-protected amino acid derivatives. The kinetic isotope studies suggest that the C–H bond activation step may not be the rate-determining step. Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity.![]()
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University) Santiniketan, 731235 West Bengal India
| |
Collapse
|
23
|
Kang JY, Kim S, Moon J, Chung E, Kim J, Kyung SY, Kim HS, Mishra NK, Kim IS. Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis. ACS OMEGA 2022; 7:14712-14722. [PMID: 35557672 PMCID: PMC9088931 DOI: 10.1021/acsomega.1c07363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 05/14/2023]
Abstract
The structural modification of N-aryl indazolols as tautomers of N-aryl indazolones has been established as a hot topic in pharmaceutics and medicinal chemistry. We herein disclose the rhodium(III)-catalyzed 1,4-addition reaction of maleimides with N-aryl indazol-3-ols, which provides the succinimide-bearing indazol-3-ol scaffolds with complete regioselectivity and a good functional group tolerance. Notably, the versatility of this protocol is demonstrated by the use of drug-molecule-linked and fluorescence-probe-linked maleimides.
Collapse
|
24
|
Verma SK, Punji B. Manganese-Catalyzed C(sp2)-H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chem Asian J 2022; 17:e202200103. [PMID: 35289105 DOI: 10.1002/asia.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Selective C(sp 2 ) - H bond alkylation of indoline, carbazole and (2-pyridinyl)arenes with unactivated alkyl bromides is achieved using MnBr 2 catalyst in the absence of an external ligand. The alkylation uses a simple LiHMDS base and avoids the necessity of Grignard reagent, unlike other Mn-catalyzed C - H functionalization. This reaction proceeded either through a five- or a less-favored six-membered metallacycle, and tolerated diverse functionalities, including alkenyl, alkynyl, silyl, aryl ether, pyrrolyl, indolyl, carbazolyl and alkyl bearing fatty alcohol and polycyclic-steroid moieties. Alkylation follows a single electron transfer (SET) pathway involving 1e oxidative addition of alkyl bromide and a rate-limiting C-H metalation.
Collapse
Affiliation(s)
- Suryadev K Verma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr. Homi Bhabha Road, Pune, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
25
|
Kianmehr E, Bari B, Jafarzadeh M, Rostami A, Golshani M, Foroumadi A. Reaction of imidazo[1,2- a]pyridines with coumarin-3-carboxylic acids: a domino Michael addition/decarboxylation/oxidation/annulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02706b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A palladium-catalyzed decarboxylative domino reaction of imidazo[1,2-a]pyridines and coumarin-3-carboxylic acids has been developed, which provides access to dibenzoisochromenoimidazo[1,2-a]pyridin-6-ones possessing six fused rings.
Collapse
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Bahareh Bari
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Mostafa Golshani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Kang QQ, Wang ZY, Hu SJ, Luo CM, Cai XE, Sun YB, Li T, Wei WT. Copper-catalyzed switchable cyclization of alkyne-tethered α-bromocarbonyls: selective access to quinolin-2-ones and quinoline-2,4-diones. Org Chem Front 2022. [DOI: 10.1039/d2qo01240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper-catalyzed cyclization of alkynes has played a significant role in modern catalytic chemistry.
Collapse
Affiliation(s)
- Qing-Qing Kang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
28
|
Chen YJ, Xu HB, Liu H, Dong L. Highly-selective synthesis of functionalized spirobenzofuranones and diketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and atom-economical rhodium(iii)-catalyzed highly-selective hydroacylation for the synthesis of spirobenzofuranones and diketones has been successfully developed.
Collapse
Affiliation(s)
- Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|