1
|
Yang S, Li H, Lv J, Wang L, Lu Y, Sun G, Wang X, Yin Q, Bi Y, Fang X. Modifications of terpenoids via inert aliphatic C-H bond heteroarylation with heteroarenes. Chem Commun (Camb) 2025. [PMID: 40370204 DOI: 10.1039/d5cc01708d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Here, we describe a method to modify commercially abundant terpenoids via inert aliphatic C-H bond heteroarylation directly with heteroarenes. The reaction is catalyzed by decatungstate anion under near-ultraviolet light irradiation. Furthermore, the inhibition effect of lipopolysaccharide (LPS)-induced nitric oxide (NO) production activity and cell proliferative inhibition in HUVEC and HCC1806 cells of the derivatives were evaluated. The heteroarylation could significantly result in changes in biological activity of terpenoids.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Huirong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Jiaxing Lv
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Lu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yongye Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Guangshun Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xiangyin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Huang X, Xiong R, Yi C, Bai M, Tang Y, Xu S, Li Y. A Radical Precursor Based on the Aromatization of p-Quinol Esters Enabled by Pyridine-Boryl Radical. J Org Chem 2025; 90:3093-3100. [PMID: 39948718 DOI: 10.1021/acs.joc.4c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A class of prearomatic carboxylic acid p-quinol ester radical precursors has been developed successfully, which could undergo homolytic cleavage of the para C-O bond of p-quinol esters via pyridine-boryl radical-induced aromatization in the presence of pyridines and diboron reagents, affording the corresponding alkyl radical via decarboxylation from the carboxyl radical in situ. In addition, the prearomatic radical precursors were further applied in radical substitution with phenylsulfonyl compounds and radical self-coulpings. This method not only provides a new approach to the generation of a radical intermediate but also expands the application of boron radicals.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shanxi Beihua Guanlv Chemical Co., LTD, Shanxi Yongji 044500, P. R. China
| | - Ruji Xiong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cui Yi
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Meiqi Bai
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Rubanov ZM, Levin VV, Dilman AD. Light-Mediated Radical Addition to Azomethine Compounds: Novel Reactivity and Activation Modes. CHEM REC 2025; 25:e202400194. [PMID: 39690857 DOI: 10.1002/tcr.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Azomethines is a class of compounds, which have traditionally served as electrophilic substrates, but their reactions with radicals have long been limited. Photocatalysis provided ample opportunities for promoting these reactions, with wide variety of reagents serving as precursors of radicals. Besides regular addition mode at the azomethine fragment, the oxidative pathway, in which the C=N bond remains in the product, has become possible by proper selection of redox catalyst. This review summarizes new developments in this rapidly developing field over the past five years. New concepts on activation of the C=N bond towards radical attack are discussed.
Collapse
Affiliation(s)
- Zakhar M Rubanov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| |
Collapse
|
4
|
Zhao YL, Min X, Li L, Han XL, Wei Y, Hu XQ. Photocatalyst-Free Transformation of C(sp 3)-H Bonds to Oxime Ethers via Photoinduced Hydrogen Atom Transfer. Org Lett 2024; 26:9383-9388. [PMID: 39436111 DOI: 10.1021/acs.orglett.4c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Herein, a direct transformation of aliphatic C-H bonds to oxime ethers has been developed via light-promoted hydrogen atom transfer (HAT) in the absence of a photocatalyst. Singlet oxygen and chlorine radical are complementary C(sp3)-H bond cleaving agents in this reaction, enabling the extraction of hydrogen atoms from a diverse range of compounds, like cycloalkanes, ethers, amines, amides, and cyclic sulfides. This method excels in transforming common aliphatic C-H bonds into valuable oxime ethers featuring abundant chemical feedstocks, good functional group tolerance, and catalyst free conditions.
Collapse
Affiliation(s)
- Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuehong Min
- Equine Science Research and Horse Doping Control Laboratory, Hubei Provincial Engineering Research Center of Racing Horse Detection and Application Transformation, Wuhan Business University, Wuhan 430056, China
| | - Lijing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Rickertsen DRL, Crow JL, Das T, Ghiviriga I, Hirschi JS, Seidel D. Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study. ACS Catal 2024; 14:14574-14585. [PMID: 39822273 PMCID: PMC11735037 DOI: 10.1021/acscatal.4c04897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
A class of in-situ generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.38 V vs. SCE. The ytterbium triflate complex of 3,6-di-t-butyl-9-mesitylacridine catalyzes a photochemical Giese-type reaction of Boc-protected secondary amines with challenging conjugate acceptors such as acrylates, that are inaccessible to the analogous acridinium (t-Bu-Mes-Acr⊕) catalyzed reaction. The mechanism of this reaction was investigated using a suite of physical organic probes including intramolecular 13C kinetic isotope effects (KIEs), variable time normalization analysis (VTNA) kinetics, determination of redox potentials, and computational studies. In the reaction catalyzed by t-Bu-Mes-Acr⊕, mechanistic studies are consistent with single-electron transfer (SET) from the ground-state reduced t-Bu-Mes-Acr• to the α-keto radical intermediate as the first irreversible step in the catalytic cycle. Intriguingly, we find that the reduced acridine/LA complexes are better ground state reductants (-0.72 to -0.74 V vs SCE) relative to t-Bu-Mes-Acr• (-0.59 V vs SCE) and predict that the increased substrate reactivity stems from a lower energy barrier for this key SET event.
Collapse
Affiliation(s)
- Dillon R. L. Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Joshua L. Crow
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Tamal Das
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Xie ZZ, Huang C, Gao J, Deng KY, Ye YQ, Xiang HY, Chen K, Yang H. Photoredox-Catalyzed Phosphine-Mediated Successive Deoxygenation of Sulfonyl Oxime Salts Enables Anti-Markovnikov Hydrothiolation of Alkenes. Org Lett 2024; 26:8100-8105. [PMID: 39287105 DOI: 10.1021/acs.orglett.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stable and easy-to-handle sodium salts of sulfonyl oximes were first identified to proceed via visible-light-driven phophine-mediated successive deoxygenation to realize the anti-Markovnikov hydrothiolation of alkenes, which could serve as an odorless sulfur source. Mechanistic studies revealed that the key thiyl radical intermediate could be generated in situ from the sulfonyl oxime anion via a phosphine-mediated fragmentation and a sequential deoxygenation process. Notably, a wide range of alkenes, including acrylamides, acrylates, vinyl ketones, vinyl sulfones, and acrylonitriles, are competent substrates for this protocol, which is highly beneficial for the construction of structurally diversified organosulfur compounds.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
7
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
8
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
9
|
Taniguchi N, Hyodo M, Pan LW, Ryu I. Photocatalytic C(sp 3)-H thiolation by a double S H2 strategy using thiosulfonates. Chem Commun (Camb) 2023. [PMID: 38018244 DOI: 10.1039/d3cc05149h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Site-selective C(sp3)-H thiolation using thiosulfonates has been achieved using the decatungstate anion as a photocatalyst. Using the protocol, a variety of thiolated compounds were synthesized in good yields. The transformation consists of a cascade of double SH2 reactions, HAT and ArS group transfer, and PCET (proton-coupled electron transfer) of the leaving arylsulfonyl radical to arylsulfinic acid thus allowing the catalyst, W10O324-, to be recovered.
Collapse
Affiliation(s)
- Nobukazu Taniguchi
- Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Mamoru Hyodo
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Lin-Wei Pan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Ilhyong Ryu
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
10
|
Dey J, Banerjee N, Daw S, Guin J. Photochemical Oximesulfonylation of Alkenes Using Sulfonyl-Oxime-Ethers as Bifunctional Reagents. Angew Chem Int Ed Engl 2023; 62:e202312384. [PMID: 37653722 DOI: 10.1002/anie.202312384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
Utilization of oxime ethers as bifunctional reagents remains unknown. Herein, we present a mechanistically distinct strategy that enables oximesulfonylation of olefins using sulfonyl-oxime-ethers as bifunctional reagents under metal-free photochemical conditions. Via concomitant C-S and C-C bond formation, the process permits incorporation of oxime and sulfonyl groups into olefins in a complete atom-economic fashion, providing rapid access to multi-functionalized β-sulfonyl oxime ethers with good yields and stereoselectivity. The method is amenable to functionalization of complex bioactive molecules and is shown to be scalable. A radical chain mechanism initiated via photochemical Hydrogen Atom Transfer (HAT) mediated N-O bond cleavage is suggested for the process, based on our results on mechanistic investigations.
Collapse
Affiliation(s)
- Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Swikriti Daw
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
11
|
Velasco-Rubio Á, Martínez-Balart P, Álvarez-Constantino AM, Fañanás-Mastral M. C-C bond formation via photocatalytic direct functionalization of simple alkanes. Chem Commun (Camb) 2023; 59:9424-9444. [PMID: 37417212 PMCID: PMC10392964 DOI: 10.1039/d3cc02790b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
The direct functionalization of alkanes represents a very important challenge in the goal to develop more atom-efficient and clean C-C bond forming reactions. These processes, however, are hampered by the low reactivity of the aliphatic C-H bonds. Photocatalytic processes based on hydrogen atom transfer C-H bond activation strategies have become a useful tool to activate and functionalize these inert compounds. In this article, we summarize the main achievements in this field applied to the development of C-C bond forming reactions, and we discuss the key mechanistic features that enable these transformations.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Pol Martínez-Balart
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Bao WH, Wu X. Visible-Light-Driven Photocatalyst-Free Deoxygenative Radical Transformation of Alcohols to Oxime Ethers. J Org Chem 2023; 88:3975-3980. [PMID: 36847637 DOI: 10.1021/acs.joc.2c03043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A visible-light-driven deoxygenative cross-coupling of alcohols with sulfonyl oxime ethers has been developed by using xanthate salts as alcohol-activating groups. Upon convenient generation and direct photoexcitation of xanthate anions, a broad range of alcohols including primary ones can efficiently undergo this transformation to afford diverse oxime ethers and derivatives. This one-pot protocol features mild conditions, broad substrate scope, and late-stage applicability, without the need for any external photocatalysts or electron donor-acceptor complex formation.
Collapse
Affiliation(s)
- Wen-Hui Bao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Luo XL, Li SS, Jiang YS, Liu F, Li SH, Xia PJ. Photocatalytic 1,2-Iminosulfonylation and Remote 1,6-Iminosulfonylation of Olefins. Org Lett 2023; 25:1742-1747. [PMID: 36883883 DOI: 10.1021/acs.orglett.3c00437] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A new class of iminosulfonylation reagents were developed and extensively used in the 1,2-iminosulfonylation of various olefins. Olefins containing bioactive molecules, such as indomethacin, gemfibrozil, clofibrate, and fenbufen, afforded the desired iminosulfonylation products in synthetically useful yields. Furthermore, the first remote 1,6-iminosulfonylation of alkenes was realized by using oxime ester bifunctionalization reagents. Overall, more than 40 structurally diverse β-imine sulfones were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Hui Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
15
|
Liu Q, Ding Y, Gao Y, Yang Y, Gao L, Pan Z, Xia C. Decatungstate Catalyzed Photochemical Acetylation of C(sp 3)–H Bonds. Org Lett 2022; 24:7983-7987. [DOI: 10.1021/acs.orglett.2c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
16
|
Dey J, Paul S, Bhakat M, Guin J. Photocatalytic Incorporation of an Oxime Ether Functional Group at Inert C(sp 3)–H Bonds via HAT. Org Lett 2022; 24:8047-8051. [DOI: 10.1021/acs.orglett.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhasis Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
17
|
Zhang J, Studer A. Decatungstate-catalyzed radical disulfuration through direct C-H functionalization for the preparation of unsymmetrical disulfides. Nat Commun 2022; 13:3886. [PMID: 35794128 PMCID: PMC9259577 DOI: 10.1038/s41467-022-31617-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Unsymmetrical disulfides are widely found in the areas of food chemistry, pharmaceutical industry, chemical biology and polymer science. Due the importance of such disulfides in various fields, general methods for the nondirected intermolecular disulfuration of C-H bonds are highly desirable. In this work, the conversion of aliphatic C(sp3)-H bonds and aldehydic C(sp2)-H bonds into the corresponding C-SS bonds with tetrasulfides (RSSSSR) as radical disulfuration reagents is reported. The decatungstate anion ([W10O32]4−) as photocatalyst is used for C-radical generation via intermolecular hydrogen atom transfer in combination with cheap sodium persulfate (Na2S2O8) as oxidant. Herein a series of valuable acyl alkyl disulfides, important precursors for the generation of RSS-anions, and unsymmetrical dialkyl disulfides are synthesized using this direct approach. To demonstrate the potential of the method for late-stage functionalization, approved drugs and natural products were successfully C-H functionalized. Despite the importance of unsymmetrical disulfides in various fields such as food chemistry, pharmaceutical industry, and polymer science, the nondirected intermolecular disulfuration of C-H bonds remains challenging. Here, the authors report the conversion of aliphatic C(sp3)-H bonds and aldehydic C(sp2)-H bonds into the corresponding C-SS bonds with tetrasulfides (RSSSSR) as radical disulfuration reagents.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
18
|
Fang J, Min Q, Qin H, Liu F. Intermolecular Acylation with Acylphosphonates as Alkyl Radical Receptor under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Wang J. Transition-metal-free, visible-light-induced multicomponent synthesis of allylic amines and tetrahydroquinolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00620k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced, 1,2,3,5-tetrakis-(carbazolyl)-4,6-dicyanobenzene (4CzIPN) catalyzed synthesis of allylic amines andtetrahydroquinolines through ‘all-alkyl’ α-amino radicals and anilinoalkyl radicals has been developed.
Collapse
Affiliation(s)
- Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
20
|
Zhang X, Zeng R. Neutrally Photoinduced MgCl2-Catalyzed Alkenylation and Imidoylation of Alkanes. Org Chem Front 2022. [DOI: 10.1039/d2qo01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a practical protocol for oxidation of the chloride ion (Cl-) to chlorine radical (Cl.) via a photoinduced MgCl2 catalysis, avoiding the use of strong acid, formal oxidant, and...
Collapse
|
21
|
Abstract
C–H Azidation is an increasingly important tool for bioconjugation, materials chemistry, and the synthesis of nitrogen-containing natural products. While several approaches have been developed, these often require exotic and energetic...
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, TX, USA.
| |
Collapse
|