1
|
Nemez DB, Kacperkiewicz A, Ortiz RJ, Williams JAG, Herbert DE. 1,7-Dihalogenated BODIPYs: Synthesis, Structure and Photophysics. J Org Chem 2025. [PMID: 40402608 DOI: 10.1021/acs.joc.5c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) and its derivatives are highly useful fluorescent dyes employed in myriad applications in chemistry and biology. Here, we revisit a series of dihalogenated (Cl, Br, I) BODIPY derivatives with rare 1,7-regiochemistry. In addition to their synthesis and structural characterization, we fill in a missing piece of the current literature by delineating their photophysical behavior, including the light-driven generation of singlet oxygen (1O2) which is mediated with particularly high efficiency by the heavier diiodinated congener.
Collapse
Affiliation(s)
- Dion B Nemez
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Amelia Kacperkiewicz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert J Ortiz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
2
|
Bogomolec M, Glavaš M, Škorić I. BODIPY Compounds Substituted on Boron. Molecules 2024; 29:5157. [PMID: 39519798 PMCID: PMC11547857 DOI: 10.3390/molecules29215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BODIPY compounds are important organic dyes with exceptional spectral and photophysical properties and numerous applications in different scientific fields. Their widespread applications have flourished due to their easy structural modifications, which enable the preparation of different molecular structures with tunable spectral and photophysical properties. To date, researchers have mostly devoted their efforts to modifying BODIPY meso-position or pyrrole rings, whereas the substitution of fluorine atoms remains largely unexplored. However, chemistry of the boron atom is possible, and it enables tuning of the photophysical properties of the dyes, without tackling their spectral properties. Furthermore, modifications of boron affect the solubility and aggregation propensity of the molecules. This review article highlights methods for the preparation of 4-substituted compounds and the most important reactions on the boron of the BODIPY dyes. They were divided into reactions promoted by Lewis acid (AlCl3 or BCl3), or bases such as alkoxides and organometallic reagents. By using these two methodologies, it is possible to cleave B-F bonds and substitute them with B-C, B-N, or B-O bonds from different nucleophiles. A special emphasis in this review is given to still underdeveloped photochemical reactions of the boron atom of BODIPY dyes. These reactions have the potential to be used in the development of a new line of BODIPY photo-cleavable protective groups (also known as photocages) with bio-medicinal and photo-pharmacological applications, such as drug delivery.
Collapse
Affiliation(s)
- Marko Bogomolec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (M.B.); (M.G.)
| | - Mladena Glavaš
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (M.B.); (M.G.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10 000 Zagreb, Croatia
| |
Collapse
|
3
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Engelhardt PM, Veronese M, Eryiğit AA, Das A, Kaczmarek AT, Rugarli EI, Schmalz HG. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy. Chemistry 2024; 30:e202400808. [PMID: 38506349 DOI: 10.1002/chem.202400808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Matteo Veronese
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alpay A Eryiğit
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Anushka Das
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander T Kaczmarek
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Elena I Rugarli
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
5
|
Zuo H, Wu Q, Guo X, Kang Z, Gao J, Wei Y, Yu C, Jiao L, Hao E. Tuning of Redox Potentials and LUMO Levels of BODIPYs via Site-Selective Direct Cyanation. Org Lett 2023; 25:8150-8155. [PMID: 37921615 DOI: 10.1021/acs.orglett.3c03330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Through a strong oxidant Pb(OAc)4 promoted oxidative nucleophilic hydrogen substitution, site-selective direct and stepwise cyanation of BODIPYs using tetrabutylammonium cyanide was developed to give α-cyanated BODIPY derivatives. Characterization of optical and electrochemical properties of these dyes provides substantial enhancement of the electron affinity, with a reduction potential and LUMO level as low as -0.04 V and -4.43 eV, respectively. Radical anions of these electron-deficient 3,5-dicyanated BODIPYs were characterized by absorption and EPR spectroscopy.
Collapse
Affiliation(s)
- Huiquan Zuo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Wei
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
6
|
Wang D, Wang L, Guo X, Zhang X, Ma J, Kang Z, Li ZY, Jiao L, Hao E. Visible-Light-Induced Direct Photoamination of BODIPY Dyes with Aqueous Ammonia. Org Lett 2023; 25:7650-7655. [PMID: 37830791 DOI: 10.1021/acs.orglett.3c02962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
By taking advantage of their strong absorption ability, visible-light-induced direct photoamination of BODIPY dyes with aqueous ammonia was developed to give structurally diverse α-amino BODIPYs. The excited state of BODIPYs possessed higher electron affinity than the ground state and thus showed largely enhanced reactivity toward weak nucleophile of ammonia. Those α-amino BODIPYs are valuable synthetic intermediates and have been successfully demonstrated in several post-transformation reactions. The work indicates that photoreaction is an excellent alternative to conventional functionalization of this popular fluorophore.
Collapse
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- School of Science, Anhui Agriculture University, Hefei 230036, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiankang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Juan Ma
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhong-Yuan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
7
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
8
|
Shi W, Li J, He X, Zhou S, Sun H, Wu H. Tuning the Physicochemical Properties of BODIPY for Bioimaging via meso-Amino Acylation. Org Lett 2022; 24:3368-3372. [PMID: 35504622 DOI: 10.1021/acs.orglett.2c01118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of BODIPY probes with a wide emission range were prepared via aminoacylation at the meso-position. Functional moieties were also introduced to induce bathochromic shifts in emission, improve water solubility, increase Stokes shifts, and construct bioorthogonal turn-on probes. The developed analogues were successfully used in live-cell imaging, suggesting that the described strategy can be used to prepare probes with improved bioimaging potential.
Collapse
Affiliation(s)
- Wei Shi
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu He
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siming Zhou
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbao Sun
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Khakyzadeh V, Ehsani A, Luque R. Shed-Snakeskin valorisation into highly porous Co-containing nanocomposites for sustainable aqueous C-C Bond formation reactions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Blázquez-Moraleja A, Maierhofer L, Mann E, Prieto-Montero R, Oliden-Sánchez A, Celada L, Martínez-Martínez V, Chiara MD, Chiara JL. Acetoxymethyl-BODIPY dyes: a universal platform for the fluorescent labeling of nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and robust methodology has been developed for the direct incorporation of a wide variety of C-, N-, P-, O-, S-, and halo-nucleophiles into functional BODIPY conjugates in a single reaction step.
Collapse
Affiliation(s)
| | - Larissa Maierhofer
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Lucía Celada
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - María-Dolores Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|