1
|
Teli YA, Reetu R, Chanu SA, Kant K, Keremane KS, Almeer R, Singh V, Malakar CC. HFIP-Mediated Dual C(Ar)-Alkylation Process Towards the Regioselective Synthesis of Triarylmethanes (TRAMs). Chem Asian J 2024; 19:e202400635. [PMID: 39109591 DOI: 10.1002/asia.202400635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
The distinct roles of different chemical species are essential for the discovery of novel chemical transformations in organic synthesis. Here, we have designed a potential strategy for the synthesis of triarylmethanes (TRAMs) using the dual C(aryl)-alkylation process. This protocol was influenced by 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a pivotal reagent and proceeds through the selective para C-H functionalization method. The described approach has been proven to be highly efficient in terms of substrate scope with excellent functional group tolerance and gram scale synthesis of the desired product with 90 % yield. The recyclability and reusability of HFIP has enhanced the feasibility of this protocol towards the sustainable synthesis of TRAMs.
Collapse
Affiliation(s)
- Yaqoob A Teli
- Department of Chemistry, National Institute of Technology Manipur, Imphal, 795004, India
| | - Reetu Reetu
- Department of Chemistry, National Institute of Technology Manipur, Imphal, 795004, India
| | - S Aleena Chanu
- Department of Chemistry, National Institute of Technology Manipur, Imphal, 795004, India
| | - Kamal Kant
- Department of Chemistry, National Institute of Technology Manipur, Imphal, 795004, India
| | - Kavya S Keremane
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Imphal, 795004, India
| |
Collapse
|
2
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
3
|
Quan R, Li X, Wang Z, He Y, Wu H. Catalytic Asymmetric Cyclizative Rearrangement of Anilines and Vicinal Diketones to Access 2,2-Disubstituted Indolin-3-ones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402532. [PMID: 38655846 PMCID: PMC11220653 DOI: 10.1002/advs.202402532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The efficient synthesis of chiral 2,2-disubstituted indolin-3-ones is of great importance due to its significant synthetic and biological applications. However, catalytic enantioselective methods for de novo synthesis of such heterocycles remain scarce. Herein, a novel cyclizative rearrangement of readily available anilines and vicinal diketones for the one-step construction of enantioenriched 2,2-disubstituted indolin-3-ones is presented. The reaction proceeds through a self-sorted [3+2] heteroannulation/regioselective dehydration/1,2-ester shift process. Only chiral phosphoric acid is employed to promote the entire sequence and simplify the manipulation of this protocol. Various common aniline derivatives are successfully applied to asymmetric synthesis as 1,3-binuclephiles for the first time. Remarkably, the observed stereoselectivity is proposed to originate from an amine-directed regio- and enantioselective ortho-Csp2-H addition of the anilines to the ketones. A range of synthetic transformations of the resulting products are demonstrated as well.
Collapse
Affiliation(s)
- Rui Quan
- Shanghai Frontiers Science Center for Drug Target Identification and DeliveryNational Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Pharmaceutical SciencesShanghai Jiao Tong University800 Dongchuan Road, MinhangShanghai200240China
| | - Xing‐Zi Li
- Shanghai Frontiers Science Center for Drug Target Identification and DeliveryNational Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Pharmaceutical SciencesShanghai Jiao Tong University800 Dongchuan Road, MinhangShanghai200240China
| | - Zi‐Qi Wang
- Shanghai Frontiers Science Center for Drug Target Identification and DeliveryNational Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Pharmaceutical SciencesShanghai Jiao Tong University800 Dongchuan Road, MinhangShanghai200240China
| | - Yu‐Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and DeliveryNational Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Pharmaceutical SciencesShanghai Jiao Tong University800 Dongchuan Road, MinhangShanghai200240China
- Department of ChemistryCollege of SciencesShanghai UniversityShanghai200444China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and DeliveryNational Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Pharmaceutical SciencesShanghai Jiao Tong University800 Dongchuan Road, MinhangShanghai200240China
| |
Collapse
|
4
|
Wei XP, Wang XC, Ma T, Qiao XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3/CPA-Catalyzed Aza-Diels-Alder Reaction of 3,3-Difluoro-2-Aryl-3H-indoles and Unactivated Dienes. Chemistry 2024; 30:e202401008. [PMID: 38624085 DOI: 10.1002/chem.202401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Here we report B(C6F5)3/CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.
Collapse
Affiliation(s)
- Xing-Pin Wei
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xin-Chun Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
5
|
Dong LJ, Wang Q, Zhang JF, Li Z, Zhu DY, Zhang XM, Tu YQ, Wang SH. Catalytic Asymmetric Synthesis of Vicinal Quaternary Stereocenters Enabled by Alkylation of α,α-Disubstituted Aldehydes with 3-Bromooxindoles. Org Lett 2024; 26:3086-3090. [PMID: 38591933 DOI: 10.1021/acs.orglett.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
An organocatalytic enantioselective alkylation of α,α-disubstituted aldehydes with 3-bromooxindoles is reported. Enantioenriched oxindoles with vicinal quaternary stereocenters are accessed by an asymmetric conjugate addition process of branched aldehydes with o-azaxylylene intermediates (indol-2-ones). Key to the success of highly diastereo- and enantioselective transformations is the combined use of a triphenylsilyl-protected β-amino alcohol catalyst derived from the spiropyrrolidine scaffold and 3,5-dinitrobenzoic acid. This study also presents a rare example of aldehyde alkylation with the formation of consecutive quaternary stereocenters.
Collapse
Affiliation(s)
- Long-Jun Dong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qi Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jing-Feng Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhen Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dao-Yong Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Li Z, Zhang XM, Zhang FM, Tu YQ. Catalytic Enantioselective Alkylation of Aldehydes with 3-Bromooxindoles. Org Lett 2023; 25:7252-7257. [PMID: 37754207 DOI: 10.1021/acs.orglett.3c02882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An asymmetric conjugate addition of aldehydes with o-azaxylylene intermediates (indol-2-ones) from 3-bromooxindoles has been developed. The use of a novel spiro-pyrrolidine (SPD)-derived bifunctional N-sulfonylated amide catalyst is essential for a highly diastereo- and enantioselective transformation to provide a wide array of enantioenriched C3 quaternary oxindoles with structurally diverse β-aldehyde appendages. Further application of this synthetic methodology enables the construction of the tricyclic cores of akuammiline-type alkaloids.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
8
|
Zhang RL, Liu B, Qiu KX, Li HT, Zhang HN, Shen BC, Sun ZW. Asymmetric Synthesis of Triphenylmethanes via Organocatalytic Regio- and Enantioselective Friedel-Crafts Alkylation of Aniline Derivatives. Org Lett 2023; 25:1711-1716. [PMID: 36892283 DOI: 10.1021/acs.orglett.3c00370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Herein, we described a highly regio- and enantioselective Friedel-Crafts alkylation of aniline derivatives with in situ generated ortho-quinone methides enabled by chiral phosphoric acid, furnishing a wide range of enantioenriched triarylmethanes bearing three similar benzene rings in high yields (up to 98%) with excellent stereoselectivities (up to 98% ee). Furthermore, the large-scale reactions and diversified transformations of product demonstrate the practicality of the protocol. Density functional theory calculations elucidate the origin of the enantioselectivity.
Collapse
Affiliation(s)
- Rui-Lin Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| | - Bo Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| | | | - Hong-Tao Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| | - Hui-Nan Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| | - Bao-Chun Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| | - Zhong-Wen Sun
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
9
|
Khan J, Yadav N, Tyagi A, Hazra CK. Silyl Cation-Initiated, Brønsted Acid-Catalyzed Strategy toward Unsymmetrical 3,3-Disubstituted 2-Oxindoles and Azonazine Cores. J Org Chem 2022; 87:11097-11111. [PMID: 35930369 DOI: 10.1021/acs.joc.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a mild, metal-free, robust approach for synthesizing valuable and sterically demanding unsymmetrical 3,3-disubstituted 2-oxindoles via reductive cyclization of α-ketoamides is reported. This operationally simple protocol is initiated by a silyl cation and further catalyzed by a Brønsted acid. We have utilized a wide range of arenes, amines, and thiols as coupling partners with various α-ketoamides. The products were afforded in excellent regioselectivity and good functional group tolerance. This procedure provides easy access to the scaffolds of azonazine and its derivatives with an excellent syn-diastereoselectivity bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Chen C, Liu RX, Xiong F, Li ZH, Kang JC, Ding TM, Zhang SY. Electrochemical collective synthesis of labeled pyrroloindoline alkaloids with Freon-type methanes as functional C1 synthons. Chem Commun (Camb) 2022; 58:9230-9233. [PMID: 35899819 DOI: 10.1039/d2cc03301a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of Freon-type methanes as functional one-carbon synthons in the synthesis of various deuterated indoline alkaloids was demonstrated here. A series of halomethyl radicals were generated from electro-reductive C-X cleavage of Freon-type methanes and captured efficiently by acrylamides to provide various halogenated oxindoles via radical cyclization. This reaction features good functional group tolerance, and deuterium and fluorine atoms could be introduced facilely from Freon-type methanes. Further transformation of halogenated oxindoles enabled the synthesis of many (labeled) bioactive drug molecules and skeletons, such as deuterated (±)-physostigmine, deuterated (±)-esermethole and deuterated (±)-lansai B.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Feng Xiong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
11
|
Zhou K, Wang D, Ju G, Deng Z, Huang P, Huang Z, Li B, Zhao Y. Ligand-Promoted Fluorinated Olefination of Isatins at the C5 Position via a Palladium Catalyst. Org Lett 2022; 24:5568-5572. [PMID: 35867047 DOI: 10.1021/acs.orglett.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed nondirected fluorinated olefination was developed. The oxalyl amide ligand greatly improved the yield of the reaction. A wide variety of isatin derivatives were well tolerated and yielded the corresponding products in moderate to good yields. Various fluorinated olefins were also compatible. The application and synthesis of bioactive compounds such as a Metisazone derivative highlight the synthetic value of this approach.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zefeng Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Pengcheng Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|