1
|
Teegala R, Bhavnari PCR, Sagar K, Ingle AB, Pradhan TR, Park JK. Chemo- and Regioselectivity in Allenamide-Homoenolate Coupling. Org Lett 2025; 27:1706-1713. [PMID: 39925249 DOI: 10.1021/acs.orglett.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
We report herein a chelation assisted, ring-strain-driven homoenolate interception with allenamides, proceeding through a complementary reactivity pattern─noncycloaddition and central C interception of C-pronucleophiles─distinct from previous studies. The developed atom-economical method provides access to carbonyl-tagged enamides with high chemo- and regioselectivity, offering a broad scope and significant synthetic value, as demonstrated by further diversification. The origin of the selectivity is clarified through experimental mechanistic investigations, revealing the detailed reaction pathway proceeding through a carbopalladation event.
Collapse
Affiliation(s)
- Raju Teegala
- Department of Chemistry, GITAM Deemed to Be University, Hyderabad, Telangana 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Purna C R Bhavnari
- Department of Chemistry, GITAM Deemed to Be University, Hyderabad, Telangana 502329, India
| | - Kadiyala Sagar
- Department of Chemistry, GITAM Deemed to Be University, Hyderabad, Telangana 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Arun B Ingle
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
3
|
Zhang K, Carmo C, Deiana L, Grape ES, Inge AK, Córdova A. Sugar-Assisted Kinetic Resolutions in Metal/Chiral Amine Co-Catalyzed α-Allylations and [4+2] Cycloadditions: Highly Enantioselective Synthesis of Sugar and Chromane Derivatives. Chemistry 2023; 29:e202301725. [PMID: 37402648 DOI: 10.1002/chem.202301725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Functionalized triose-, furanose and chromane-derivatives were synthesized by the titled reactions. The sugar-assisted kinetic resolution/C-C bond-forming cascade processes generate a functionalized sugar derivative with a quaternary stereocenter in a highly enantioselective fashion (up to >99 % ee) by using a simple combination of metal and chiral amine co-catalysts. Notably, the interplay between the chiral sugar substrate and the chiral amino acid derivative allowed for the construction of a functionalized sugar product with high enantioselectivity (up to 99 %) also when using a combination of racemic amine catalyst (0 % ee) and metal catalyst.
Collapse
Affiliation(s)
- Kaiheng Zhang
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| | - Chrislaura Carmo
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| | - Luca Deiana
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10 691, Stockholm, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10 691, Stockholm, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| |
Collapse
|
4
|
Vera S, Landa A, Mielgo A, Ganboa I, Oiarbide M, Soloshonok V. Catalytic Asymmetric α-Functionalization of α-Branched Aldehydes. Molecules 2023; 28:molecules28062694. [PMID: 36985666 PMCID: PMC10056299 DOI: 10.3390/molecules28062694] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Aldehydes constitute a main class of organic compounds widely applied in synthesis. As such, catalyst-controlled enantioselective α-functionalization of aldehydes has attracted great interest over the years. In this context, α-branched aldehydes are especially challenging substrates because of reactivity and selectivity issues. Firstly, the transient trisubstituted enamines and enolates resulting upon treatment with an aminocatalyst or a base, respectively, would exhibit attenuated reactivity; secondly, mixtures of E- and Z-configured enamines/enolates may be formed; and third, effective face-discrimination on such trisubstituted sp2 carbon intermediates by the incoming electrophilic reagent is not trivial. Despite these issues, in the last 15 years, several catalytic approaches for the α-functionalization of prostereogenic α-branched aldehydes that proceed in useful yields and diastereo- and enantioselectivity have been uncovered. Developments include both organocatalytic and metal-catalyzed approaches as well as dual catalysis strategies for forging new carbon–carbon and carbon–heteroatom (C-O, N, S, F, Cl, Br, …) bond formation at Cα of the starting aldehyde. In this review, some key early contributions to the field are presented, but focus is on the most recent methods, mainly covering the literature from year 2014 onward.
Collapse
Affiliation(s)
- Silvia Vera
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Aitor Landa
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Antonia Mielgo
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Correspondence: (A.M.); (M.O.)
| | - Iñaki Ganboa
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mikel Oiarbide
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Correspondence: (A.M.); (M.O.)
| | - Vadim Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Li TT, You Y, Sun TJ, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Copper-Catalyzed Decarboxylative Cascade Cyclization of Propargylic Cyclic Carbonates/Carbamates with Pyridinium 1,4-Zwitterionic Thiolates to Fused Polyheterocyclic Structures. Org Lett 2022; 24:5120-5125. [PMID: 35819406 DOI: 10.1021/acs.orglett.2c01959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed decarboxylative cascade cyclization of propargylic cyclic carbonates/carbamates with pyridinium 1,4-zwitterionic thiolates is developed. A range of fused polyheterocyclic compounds are obtained in moderate to good yields with excellent diastereoselectivities. Of particular note is that four new bonds (two C-C, one C-O/N, one C-S) and four new stereocenters could be efficiently embedded into the tetracyclic fused scaffolds in a single step.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Jia Sun
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Chen JF, Rehman SU, Li C. Cobalt-catalyzed regiodivergent hydrofunctionalization of allenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A regiodivergent cobalt-catalyzed addition of carboxylic acid or 1,3-dicarbonyl compounds to allenes has been developed to prepare E-enol esters and allylation products.
Collapse
Affiliation(s)
- Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|