1
|
Chen H, Li Y, Yu L, Hu X, Wang H, Wang Q, Tang P, Chen FE. Total Synthesis of (+)-Leucolusine and (-)-7- epi-Leucolusine. Org Lett 2025; 27:4992-4996. [PMID: 40315257 DOI: 10.1021/acs.orglett.5c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Herein, we report the concise total syntheses of (+)-leucolusine and (-)-7-epi-leucolusine achieved in 8 steps starting from commercially available piperidin-2-one. Our strategy highlights a palladium-catalyzed decarboxylative asymmetric allylic alkylation for constructing the δ-lactam bearing a C20 all-carbon quaternary stereocenter. Additionally, the cis-fused octahydrofuro[2,3-b]pyridine unit was efficiently constructed via a one-pot protocol encompassing reduction and oxa-Mannich-type cyclization processes.
Collapse
Affiliation(s)
- Hanlin Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Yu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaomei Hu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
2
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
3
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
4
|
Bowen E, Laidlaw G, Atkinson BC, McArdle-Ismaguilov TA, Franckevičius V. Catalytic Enantioselective Synthesis of α-Difunctionalized Cyclic Sulfones. J Org Chem 2022; 87:10256-10276. [PMID: 35801657 PMCID: PMC9490805 DOI: 10.1021/acs.joc.2c01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As saturated heterocyclic building blocks become increasingly popular in medicinal chemistry and drug discovery programs, expansion of the synthetic toolkit to novel stereofunctionalized heterocycles is a priority. Herein, we report the development of a palladium-catalyzed decarboxylative asymmetric allylic alkylation reaction to access a broad range of enantioenriched α-difunctionalized 5- and 6-membered sulfones from easily accessible racemic starting materials. The allylic alkylation step was found to occur with high levels of enantioselectivity as a result of a palladium-mediated dynamic kinetic resolution of E/Z enolate intermediates. This methodology paves the way to hitherto unexplored stereodefined cyclic sulfones for medicinal chemistry applications.
Collapse
Affiliation(s)
- Eleanor Bowen
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Gillian Laidlaw
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| | | | | | | |
Collapse
|