1
|
Chen X, Li G, Huang Z, Luo Q, Chen T, Yang W. Synthesis of nicotinimidamides via a tandem CuAAC/ring-cleavage /cyclization/oxidation four-component reaction and their cytotoxicity. RSC Adv 2024; 14:25844-25851. [PMID: 39156748 PMCID: PMC11328002 DOI: 10.1039/d4ra04918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Nicotinamide and its derivatives, recognized as crucial drug intermediates, have been a focal point of extensive chemical modifications and rigorous pharmacological studies. Herein, a series of novel nicotinamide derivatives, nicotinimidamides, were synthesized via a tandem CuAAC/ring-cleavage/cyclization/oxidation four-component reaction procedure from O-acetyl oximes, terminal ynones, sulfonyl azides, and NH4OAc. This strategy is significantly more efficient than previously reported, and the cytotoxicity of the nicotinimidamides is also tested. This project not only exhibits a sustainable and eco-friendly domino methodology for the creation of nicotinimidamides but also presents a promising candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Guanrong Li
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Zixin Huang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University Zhanjiang 524048 P. R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Weiguang Yang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| |
Collapse
|
2
|
Li G, Luo D, Luo Q, Huang Z, Zhuang W, Luo H, Yang W. Chemoselectivity of the CuAAC/Ring Cleavage/Cyclization Reaction between Enaminones and α-Acylketenimine. J Org Chem 2024; 89:2190-2199. [PMID: 38279922 DOI: 10.1021/acs.joc.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Ketenimines represent an important class of reactive species, useful synthetic intermediates, and synthons. However, in general, ketenimines preferentially undergoes nucleophilic addition reactions with hydroxyl and amino groups, and carbon functional groups remain a less studied subset of such systems. Herein, we develop a straightforward syntheses of pyridin-4(1H)-imines that is achieved by cyclization of a reacting enaminone unit with α-acylketenimine which is generated from the reactions of sulfonyl azides and terminal ynones in situ (CuAAC/Ring cleavage reaction). The cascade process preferentially starts with the nucleophilic α-C of the enaminone unit instead of an amino group, attacking the electron-deficient central carbon of ketenimine, and the chemoselectivity unconventional products pyridin-4(1H)-imines were formed by intramolecular cyclization.
Collapse
Affiliation(s)
- Guanrong Li
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Danyang Luo
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P. R. China
| | - Zixin Huang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weimin Zhuang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weiguang Yang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
3
|
Yang W, Luo D, Li G, Luo Q, Banwell MG, Chen L. Synthesis of Pyridin-1(2 H)-ylacrylates and the Effects of Different Functional Groups on Their Fluorescence. Molecules 2023; 28:6511. [PMID: 37764287 PMCID: PMC10536652 DOI: 10.3390/molecules28186511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Martin G. Banwell
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
- Institute for Advanced and Applied Chemical Synthesis (IAACS), Jinan University, Guangzhou 510632, China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| |
Collapse
|
4
|
He Y, Yang Z, Luo D, Luo X, Chen X, Yang W. An Oxidant-Free and Mild Strategy for Quinazolin-4(3 H)-One Synthesis via CuAAC/Ring Cleavage Reaction. Molecules 2023; 28:5734. [PMID: 37570705 PMCID: PMC10420183 DOI: 10.3390/molecules28155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
An oxidant-free and highly efficient synthesis of phenolic quinazolin-4(3H)-ones was achieved by simply stirring a mixture of 2-aminobenzamides, sulfonyl azides, and terminal alkynes. The intermediate N-sulfonylketenimine underwent two nucleophilic additions and the sulfonyl group eliminated through the power of aromatization. The natural product 2-(4-hydroxybenzyl)quinazolin-4(3H)-one can be synthesized on a large scale under mild conditions with this method.
Collapse
Affiliation(s)
- Yueling He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
| | - Danyang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
| | - Xiai Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- Hunan Province Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xiaodong Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| | - Weiguang Yang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| |
Collapse
|
5
|
Yang W, Luo D, Li G, Hu W, Zheng J, Chen L. Mild and efficient synthesis of benzothiazolopyrimidine derivatives via CuAAC/ring cleavage/cyclization reaction. RSC Adv 2023; 13:22966-22972. [PMID: 37520094 PMCID: PMC10377972 DOI: 10.1039/d3ra04082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
An operationally mild and efficient synthesis of benzothiazolopyrimidine is achieved by a three-component reaction of 2-aminebenzo[d]thiazoles, sulfonyl azides and terminal ynones. This cascade process involved a CuAAC/ring cleavage/cyclization reaction. Particularly, most of the benzothiazolopyrimidine derivatives could be isolated by filtration without further purification.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Weigao Hu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Jia Zheng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| |
Collapse
|
6
|
Luo X, Yang Z, Zheng J, Liang G, Luo H, Yang W. CuX Dual Catalysis: Construction of Oxazolo[2,3- b][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Org Lett 2022; 24:7300-7304. [PMID: 36178978 DOI: 10.1021/acs.orglett.2c02705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuX as a simple dual catalyst strategy that promotes the tandem transformations of fused oxazolo[2,3-b][1,3]oxazines has been developed. Copper catalyzed terminal ynones, sulfonyl azides, and nitriles for the CuAAC/ring cleavage/[4+2] annulation reaction, while the halogen catalyzed ring cleavage and [2+3] annulation of oxiranes to form the final fused products. This study provides a four-component, one-pot strategy for synthesizing complex fused heterocycles from simple ingredients and expands the application of CuAAC in organic synthesis.
Collapse
Affiliation(s)
- Xiai Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Jia Zheng
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Gang Liang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hui Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Copper Catalyzed Inverse Electron Demand [4+2] Cycloaddition for the Synthesis of Oxazines. Catalysts 2022. [DOI: 10.3390/catal12050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A copper catalyzed tandem CuAAC/ring cleavage/[4+2] annulation reaction of terminal ynones, sulfonyl azides, and imines has been developed to synthesize the functionalized oxazines under mild conditions. Particularly, the intermediate N-sulfonyl acylketenimines undergo cycloaddition of an inverse electron demand Diels–Alder reaction with imines and a series of 1,3-oxazine derivatives were obtained successfully in good yields.
Collapse
|
8
|
Zhou Z, Luo D, Li G, Yang Z, Cui L, Yang W. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2- a]pyridines. RSC Adv 2022; 12:20199-20205. [PMID: 35919587 PMCID: PMC9280286 DOI: 10.1039/d2ra02722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
An efficient three-component one-pot and operationally simple cascade of 2-aminopyridines with sulfonyl azides and terminal ynones is reported, providing a variety of polysubstituted imidazo[1,2-a]pyridine derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-cleavage process and forms a highly active intermediate α-acyl-N-sulfonyl ketenimine with base free. Three-component one-pot synthesis of polysubstituted imidazo[1,2-a]pyridine derivatives through a base free CuAAC/ring-cleavage process.![]()
Collapse
Affiliation(s)
- Zitong Zhou
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Danyang Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guanrong Li
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongtao Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Liao Cui
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| |
Collapse
|