1
|
Zhong C, Qu G, Wang J, Xu B, Cui B, Shi Y, Cao C. One-Pot Synthesis of Benzoxazoles and Sulfoxides: Complete Utilization of Diaryl Sulfoxides. J Org Chem 2025; 90:6208-6218. [PMID: 40300105 DOI: 10.1021/acs.joc.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Synthesis of 2-aryl benzoxazoles and aryl sulfoxide derivatives in a one-pot process has been developed via the palladium-catalyzed cross-coupling of diaryl sulfoxides with benzoxazoles, followed by trapping the remaining sulfenate anions with different electrophilic reagents. The reaction involves the C-S and C-H bond activation and the C-C and C-S bond formation. The protocol allows a broad scope of substrates, functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Chuntao Zhong
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jingdi Wang
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoshan Xu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Fang X, Xi L, Wang M, Xiao J, Zhao Y, Willis MC, Shi Z. Asymmetric reductive arylation and alkenylation to access S-chirogenic sulfinamides. Nat Commun 2025; 16:2547. [PMID: 40089472 PMCID: PMC11910617 DOI: 10.1038/s41467-025-57471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
The study of the stereochemistry of organic sulfur compounds has been ongoing for over a century, with S-chirogenic pharmacophores playing an essential role in drug discovery within bioscience and medicinal chemistry. Traditionally, the synthesis of sulfinamides featuring stereogenic sulfur(IV) centers involves a complex, multistep process that often depends on chiral auxiliaries or kinetic resolution. Here, we introduce an effective and versatile method for synthesizing diverse classes of S-chirogenic sulfinamides through selective aryl and alkenyl addition to sulfinylamines. This process is catalysed by a chiral nickel or cobalt complex under reductive conditions, and eliminating the need for preformed organometallic reagents. The method facilitates the incorporation of a diverse array of aryl and alkenyl halides at the sulfur position, enabling their integration into various biologically significant sulfur pharmacophores. Our detailed mechanistic investigations and density functional theory calculations provide insights into the reaction pathway, particularly highlighting the enantiocontrol mode during addition process.
Collapse
Affiliation(s)
- Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | | | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
3
|
Zhu X, Wu J, Zhang J, Yang J. Photoredox-catalyzed deoxygenative radical transformation of alcohols to sulfinamides. RSC Adv 2025; 15:4532-4535. [PMID: 39931420 PMCID: PMC11808478 DOI: 10.1039/d5ra00158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Sulfinamides play a crucial role in organic synthesis and pharmaceuticals. In this study, we introduce a highly effective method for the deoxygenative radical addition to N-tritylsulfinylamine, which produces sulfinamides via photoredox catalysis. This method is compatible with a diverse array of functional groups and the resulting sulfonamides were achieved in moderate to high yields. Furthermore, the synthetic applications to access various sulfur(vi)-centered functional groups highlight the practicality of this approach.
Collapse
Affiliation(s)
- Xinyu Zhu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Junliang Wu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Junfeng Yang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
4
|
Das S, Dhibar A, Sahoo B. Strategic Synthesis of Sulfinamides as Versatile S(IV) Intermediates. ACS ORGANIC & INORGANIC AU 2025; 5:1-12. [PMID: 39927100 PMCID: PMC11803471 DOI: 10.1021/acsorginorgau.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 02/11/2025]
Abstract
Sulfinamides constitute adaptable S(IV) intermediates with a sulfur stereocenter, having emerging interest in divergent synthesis of high-valent S(VI) functional bioisosteres. Recent years have witnessed the strategic development of mild and selective synthetic routes for highly functionalized sulfinamides, employing stable organometallic reagents, carbon-centered radical precursors, and other abundant coupling partners merged with various sulfur reagents in the arena of metal, photoredox, and organocatalysis. Furthermore, asymmetric metal and organocatalysis have enabled the stereoselective synthesis of enantioenriched sulfinamides. In this Perspective, we present the recent (2021 to present) advancement of various synthetic methods toward sulfinamides.
Collapse
Affiliation(s)
- Subham Das
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Amit Dhibar
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
5
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Andrews JA, Woodger RG, Palmer CF, Poole DL, Willis MC. Exploiting trans-Sulfinylation for the Synthesis of Diverse N-Alkyl Sulfinamides via Decarboxylative Sulfinamidation. Angew Chem Int Ed Engl 2024; 63:e202407970. [PMID: 38962950 DOI: 10.1002/anie.202407970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Combining simple amines with the bench-stable sulfinylamine Tr-NSO allows in situ preparation of reactive alkyl sulfinylamines, which when combined with alkyl radicals generated by photocatalytic decarboxylation, provides N-alkyl sulfinamides. The reactions are broad in scope and tolerate a wide variety of functional groups on both the acid and amine components. The sulfinamide products are used to prepare a selection of challenging S(VI) products. The method provides a convenient way to use reactive and unstable alkyl sulfinylamines.
Collapse
Affiliation(s)
- Jonathan A Andrews
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Russell G Woodger
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Darren L Poole
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
7
|
Athawale PR, Shultz ZP, Saputo A, Hall YD, Lopchuk JM. Strain-release driven reactivity of a chiral SuFEx reagent provides stereocontrolled access to sulfinamides, sulfonimidamides, and sulfoximines. Nat Commun 2024; 15:7001. [PMID: 39143047 PMCID: PMC11324897 DOI: 10.1038/s41467-024-51224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Efforts aimed at enriching the chemical and structural diversity of small molecules have invigorated synthetic exploration in the last two decades. Spatially defined molecular functionality serves as the foundation to construct unique chemical space to further advance discovery science. The chiral SuFEx reagent t-BuSF provides a modular platform for the stereocontrolled bifunctionalization of sulfur. Here we report a third functional feature of t-BuSF enabled by carbamoyl torsional strain-release that further expands the S(IV) and S(VI) chemical space accessible as showcased in over seventy examples, multiple applications in medicinal chemistry, organocatalysis, and diversity-oriented synthesis. The methods presented herein allow for rapid asymmetric diversification around a stereodefined sulfur center with readily available building blocks, improving upon the current state-of-the-art for sulfinyl and sulfonimidoyl synthesis.
Collapse
Affiliation(s)
- Paresh R Athawale
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zachary P Shultz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Alexandra Saputo
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Yvonne D Hall
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Justin M Lopchuk
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Wei MK, Moseley DF, Bär RM, Sempere Y, Willis MC. Palladium-Catalyzed Addition of Aryl Halides to N-Sulfinylamines for the Synthesis of Sulfinamides. J Am Chem Soc 2024; 146:19690-19695. [PMID: 38994915 PMCID: PMC11273345 DOI: 10.1021/jacs.4c06726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sulfinamides are versatile, synthetically useful intermediates, and final motifs. Traditional methods to synthesize sulfinamides generally require substrates with preinstalled sulfur centers. However, these precursors have limited commercial availability, and the associated synthetic routes often require harsh reaction conditions and highly reactive reagents, thus severely limiting their application. Herein, we report the synthesis of sulfinamides from aryl and alkenyl (pseudo)halides and N-sulfinylamines, enabled by palladium catalysis. The reactions use mild conditions and are achieved without the use of highly reactive preformed organometallic reagents, resulting in transformations of broad generality and high functional group tolerance. In particular, substrates featuring protic and electrophilic functional groups can be used successfully. The modification of complex aryl cores and natural product derivatives demonstrates the utility of this method.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Daniel F. Moseley
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin M. Bär
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Yeshua Sempere
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
9
|
Xi L, Fang X, Wang M, Shi Z. Asymmetric 2,3-Addition of Sulfinylamines with Arylboronic Acids Enabled by Nickel Catalysis. J Am Chem Soc 2024; 146:17587-17594. [PMID: 38913452 DOI: 10.1021/jacs.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Sulfinamides have been widely used in organic synthesis, with research on their preparation spanning more than a century. Despite advancements in catalytic methodologies, creating sulfur stereocenters within these molecules remains a significant challenge. In this study, we present an effective and versatile method for synthesizing a diverse range of S-chirogenic sulfinamides through catalytic asymmetric aryl addition to sulfinylamines. By utilizing a nickel complex as a catalyst, this process exhibits impressive enantioselectivity and can incorporate various arylboronic acids at the sulfur position. The resulting synthetic sulfinamides are stable and highly adaptable, allowing for their conversion to a variety of sulfur-containing compounds. Our study also incorporates detailed experimental and computational studies to elucidate the reaction mechanism and factors influencing enantioselectivity.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Teng S, Shultz ZP, Shan C, Wojtas L, Lopchuk JM. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat Chem 2024; 16:183-192. [PMID: 38238465 PMCID: PMC11000591 DOI: 10.1038/s41557-023-01419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024]
Abstract
An increased interest to expand three-dimensional chemical space for the design of new materials and medicines has created a demand for isosteric replacement groups of commonly used molecular functionality. The structural and chemical properties of chiral S(VI) functional groups provide unique spatial and electronic features compared with their achiral sulfur- and carbon-based counterparts. Manipulation of the S(VI) centre to introduce structural variation with stereochemical control has remained a synthetic challenge. The stability of sulfonimidoyl fluorides and the efficiency of sulfur fluorine exchange chemistry has enabled the development of the enantiopure bifunctional S(VI) transfer reagent t-BuSF to overcome current synthetic limitations. Here, we disclose a reagent platform that serves as a chiral sulfur fluorine exchange template for the rapid asymmetric synthesis of over 70 sulfoximines, sulfonimidoyl fluorides and sulfonimidamides with excellent enantiomeric excess and good overall yields. Furthermore, the practical utility of the bifunctional S(VI) transfer reagent was demonstrated in the syntheses of enantiopure pharmaceutical intermediates and analogues.
Collapse
Affiliation(s)
- Shun Teng
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Zachary P Shultz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Justin M Lopchuk
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
11
|
Yan M, Wang SF, Zhang YP, Zhao JZ, Tang Z, Li GX. Synthesis of sulfinamides via photocatalytic alkylation or arylation of sulfinylamine. Org Biomol Chem 2024; 22:348-352. [PMID: 38086690 DOI: 10.1039/d3ob01782f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sulfinamides are a versatile class of compounds that find applications in both organic synthesis and pharmaceuticals. Here we developed an efficient photocatalytic approach for the convenient preparation of sulfinamides. Commercially available potassium trifluoro(organo)borates and readily available sulfinyl amines are rationally used and converted to a series of alkyl or aryl sulfinamides in moderate to high yields. The reaction allows for the gram-scale preparation of sulfinamides. Moreover, sulfonimidamides, sulfonimidate esters and sulfonyl amides could be obtained in one pot.
Collapse
Affiliation(s)
- Ming Yan
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Si-Fan Wang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Yong-Po Zhang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| | - Jin-Zhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Pan S, Mulks FF, Wu P, Rissanen K, Bolm C. Mechanochemical Iron-Catalyzed Nitrene Transfer Reactions: Direct Synthesis of N-Acyl Sulfonimidamides from Sulfinamides and Dioxazolones. Angew Chem Int Ed Engl 2023:e202316702. [PMID: 38055189 DOI: 10.1002/anie.202316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A mechanochemical synthesis of sulfonimidamides by iron(II)-catalyzed exogenous ligand-free N-acyl nitrene transfer to sulfinamides is reported. The one-step method tolerates a wide range of sulfinamides with various substituents under solvent-free ambient conditions. Compared to its solution-phase counterpart, this mechanochemical approach shows better conversion and chemoselectivity. Mechanistic investigations by ESI-MS revealed the generation of crucial nitrene iron intermediates.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
13
|
Roy S, Biswas A, Paul H, Ariyan SK, Chatterjee I. Introducing N-Sulfinylamines into Visible-Light-Induced Carbene Chemistry for the Synthesis of Diverse Amides and α-Iminoesters. Org Lett 2023; 25:8511-8515. [PMID: 37975825 DOI: 10.1021/acs.orglett.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A rare example of visible-light-mediated diverse reactivity of N-sulfinylamines with different types of carbene precursors has been disclosed. Acylsilanes and aryldiazoacetates have been utilized as nucleophilic and electrophilic carbene precursors into the N═S═O linchpin, to achieve valuable amides and α-iminoesters, respectively. Interestingly, diazocarbonyls can also participate in the amidation reaction with N-sulfinylamines via in situ generated ketenes. This operationally simple modular method offers a mild, transition-metal-free, and coupling-reagent-free protocol to fabricate structurally diverse amides and a promptly accessible technique to achieve α-iminoesters, where visible light remains as a key promoter.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Apurba Biswas
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - S K Ariyan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
14
|
Dang HT, Porey A, Nand S, Trevino R, Manning-Lorino P, Hughes WB, Fremin SO, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfinamides. Chem Sci 2023; 14:13384-13391. [PMID: 38033883 PMCID: PMC10685282 DOI: 10.1039/d3sc04727j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 12/02/2023] Open
Abstract
Sulfinamides are some of the most centrally important four-valent sulfur compounds that serve as critical entry points to an array of emergent medicinal functional groups, molecular tools for bioconjugation, and synthetic intermediates including sulfoximines, sulfonimidamides, and sulfonimidoyl halides, as well as a wide range of other S(iv) and S(vi) functionalities. Yet, the accessible chemical space of sulfinamides remains limited, and the approaches to sulfinamides are largely confined to two-electron nucleophilic substitution reactions. We report herein a direct radical-mediated decarboxylative sulfinamidation that for the first time enables access to sulfinamides from the broad and structurally diverse chemical space of carboxylic acids. Our studies show that the formation of sulfinamides prevails despite the inherent thermodynamic preference for the radical addition to the nitrogen atom, while a machine learning-derived model facilitates prediction of the reaction efficiency based on computationally generated descriptors of the underlying radical reactivity.
Collapse
Affiliation(s)
- Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Patrick Manning-Lorino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William T Thompson
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
15
|
Andrews J, Kalepu J, Palmer CF, Poole DL, Christensen KE, Willis MC. Photocatalytic Carboxylate to Sulfinamide Switching Delivers a Divergent Synthesis of Sulfonamides and Sulfonimidamides. J Am Chem Soc 2023; 145:21623-21629. [PMID: 37738304 PMCID: PMC10557147 DOI: 10.1021/jacs.3c07974] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 09/24/2023]
Abstract
sulfinamides, sulfonamides, and sulfonimidamides are in-demand motifs in medicinal chemistry, yet methods for the synthesis of alkyl variants that start from simple, readily available feedstocks are scarce. In addition, bespoke syntheses of each class of molecules are usually needed. In this report, we detail the synthesis of these three distinct sulfur functional groups, using readily available and structurally diverse alkyl carboxylic acids as the starting materials. The method harnesses alkyl radical generation from carboxylic acids using acridine photocatalysts and 400 nm light with subsequent radical addition to sulfinylamine reagents, delivering sulfinamide products. Using the N-alkoxy sulfinylamine reagent t-BuO-NSO as the radical trap provides common N-alkoxy sulfinamide intermediates, which can be converted in a divergent manner to either sulfonamides or sulfonimidamides, by treatment with sodium hydroxide, or an amine, respectively. The reactions are scalable, tolerate a broad range of functional groups, and can be used for the diversification of complex biologically active compounds.
Collapse
Affiliation(s)
- Jonathan
A. Andrews
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jagadeesh Kalepu
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Darren L. Poole
- GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K.
| | | | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
16
|
Abstract
Organosulfur functionalities are ubiquitous in nature, pharmaceuticals, agrochemicals, materials and flavourants. Historically, these moieties were introduced almost exclusively using ionic chemistry; however, radical-based methods for the installation of sulfur-based functional groups have recently come to the fore. These radical methods have enabled their late-stage introduction into complex molecules, avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. Here, we discuss homolytic C-S bond-forming processes, with a particular emphasis on radical substitution approaches to sulfide, disulfide and sulfinyl products, and the use of sulfur dioxide and its surrogates to build sulfonyl products. We also highlight the mechanistic considerations that we hope will guide further development of radical-based strategies compatible with the various organosulfur moieties that feature in modern chemistry.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
Yang GF, Huang HS, Nie XK, Zhang SQ, Cui X, Tang Z, Li GX. One-Pot Tandem Oxidative Bromination and Amination of Sulfenamide for the Synthesis of Sulfinamidines. J Org Chem 2023; 88:4581-4591. [PMID: 36926918 DOI: 10.1021/acs.joc.3c00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The sulfinamidines as aza analogues of sulfinamides received limited attention from both organic chemists and pharmaceutical chemists. Herein, we present a tandem oxidative/nucleophilic substitution approach for the synthesis of sulfinamidines in high yield (up to 98%). This cascade reaction method is enabled by N-bromosuccinimide (NBS) as an oxidant and diverse readily available amines as nucleophiles without any additives or catalysts. Notably, this method is highly time-economical, safe to operate, and easy to scale up and has excellent functional group compatibility.
Collapse
Affiliation(s)
- Gao-Feng Yang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - He-Sen Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - Xiao-Kang Nie
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - Shi-Qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| |
Collapse
|
18
|
Li L, Zhang SQ, Chen Y, Cui X, Zhao G, Tang Z, Li GX. Photoredox Alkylation of Sulfinylamine Enables the Synthesis of Highly Functionalized Sulfinamides and S(VI) Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Kou M, Wei Z, Li Z, Xu B. Copper-Catalyzed Sulfinyl Cross-Coupling Reaction of Sulfinamides. Org Lett 2022; 24:8514-8519. [DOI: 10.1021/acs.orglett.2c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengting Kou
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
20
|
Andresini M, Carret S, Degennaro L, Ciriaco F, Poisson J, Luisi R. Multistep Continuous Flow Synthesis of Isolable NH 2 -Sulfinamidines via Nucleophilic Addition to Transient Sulfurdiimide. Chemistry 2022; 28:e202202066. [PMID: 35861934 PMCID: PMC9804385 DOI: 10.1002/chem.202202066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 01/05/2023]
Abstract
The growing interest in novel sulfur pharmacophores led to recent advances in the synthesis of some S(IV) and S(VI) motifs. However, preparation and isolation of uncommon primary sulfinamidines, the aza-analogues of sulfinamides, is highly desirable. Here we report a multistep continuous flow synthesis of poorly explored NH2 -sulfinamidines by nucleophilic attack of organometallic reagents to in situ prepared N-(trimethylsilyl)-N-trityl-λ4 -sulfanediimine (Tr-N=S=N-TMS). The transformation can additionally be realized under mild conditions, at room temperature, via a highly chemoselective halogen-lithium exchange of aryl bromides and iodides with n-butyllithium. Moreover, the synthetic potential of the methodology was assessed by exploring further manipulations of the products and accessing novel S(IV) analogues of celecoxib, tasisulam, and relevant sulfinimidoylureas.
Collapse
Affiliation(s)
- Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
- Univ. Grenoble Alpes, CNRS, DCM301 rue de la chimie38000GrenobleFrance
| | - Sébastien Carret
- Univ. Grenoble Alpes, CNRS, DCM301 rue de la chimie38000GrenobleFrance
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| | - Fulvio Ciriaco
- Department of ChemistryUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| | | | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| |
Collapse
|
21
|
Wu P, Demaerel J, Kong D, Ma D, Bolm C. Copper-Catalyzed, Aerobic Synthesis of NH-Sulfonimidamides from Primary Sulfinamides and Secondary Amines. Org Lett 2022; 24:6988-6992. [PMID: 36125127 DOI: 10.1021/acs.orglett.2c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NH-Sulfonimidamides are prepared by copper-catalyzed coupling of primary sulfinamides with secondary amines. Neither a ligand nor an additive is needed, and air is the terminal oxidant. The reactions occur at room temperature, show good functional group tolerance, and lead to products in good yields. A sulfanenitrile is proposed as an intermediate in this oxidative amination.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Joachim Demaerel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
22
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
23
|
Abstract
![]()
Sulfur functional
groups are common motifs in bioactive molecules.
Sulfonamides are most prevalent but related aza-derivatives, in which
oxygen atoms are replaced by imidic nitrogens, such as sulfoximines
and sulfonimidamides, are gaining attraction. Despite this activity,
the double aza-variants of sulfonamides, termed sulfondiimidamides,
are almost completely absent from the literature. The reason for this
is poor synthetic accessibility. Although a recent synthesis has established
sulfondiimidamides as viable motifs, the length of the route and the
capricious nature of the key sulfondiimidoyl fluoride intermediates
mean that direct application to discovery chemistry is challenging.
Herein, we describe a two-step synthesis of sulfondiimidamides, exploiting
a hypervalent iodine-mediated amination as the key step. The starting
materials are organometallic reagents, an unsymmetrical sulfurdiimide,
and amines. The method allowed >40 examples to be prepared, including
derivatives of three sulfonamide-based drugs. The operational simplicity,
broad scope, and concise nature make this route attractive for discovery
chemistry applications.
Collapse
Affiliation(s)
- Ze-Xin Zhang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Charles Bell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Mingyan Ding
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Michael C Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
24
|
Terhorst S, Jansen T, Langletz T, Bolm C. Sulfonimidamides by Sequential Mechanochemical Chlorinations and Aminations of Sulfinamides. Org Lett 2022; 24:4109-4113. [PMID: 35658444 DOI: 10.1021/acs.orglett.2c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report the first mechanochemical synthesis of sulfonimidamides. The one-pot, two-step method requires neither a solvent nor inert conditions. In a mixer mill, sulfinamides are rapidly converted to sulfonimidoyl chlorides by oxidative chlorination with N-chlorosuccinimide (NCS). Subsequent substitutions with amines provides a wide range of diversely substituted sulfonimidamides.
Collapse
Affiliation(s)
- Steven Terhorst
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Jansen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Langletz
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
25
|
|