1
|
Khan S, Wang T, Arifeen MZU, Huang S. Exploring the bioactive potential of deep-sea microorganisms: A review of recent discoveries. Bioorg Chem 2025; 161:108521. [PMID: 40373561 DOI: 10.1016/j.bioorg.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/08/2025] [Accepted: 04/24/2025] [Indexed: 05/17/2025]
Abstract
The deep-sea ecosystem, one of the most extreme and underexplored environments, harbors a remarkable diversity of microorganisms capable of producing bioactive compounds with immense pharmaceutical potential. Deep-sea microorganisms, inhabiting depths beyond 100 m, have emerged as a particularly promising source of novel bioactive compounds due to their adaptation to extreme conditions such as high pressure, low temperatures, and absence of light. This review highlights recent advancements in the discovery and characterization of 440 novel natural products from deep-sea organisms (100-11,000 m) between 2020 and October 2024. It encompasses a diverse range of deep-sea fungi and actinomycetes, detailing their source organisms, collection depths, and geographic origins. Remarkably, 80 % of these compounds exhibit bioactivity, with nearly half demonstrating potent cytotoxicity at low micromolar concentrations against various human cancer cell lines. Despite the vast majority of deep-sea microbes remaining unexplored, their potential to yield unique natural products is immense. This review succinctly presents these discoveries, emphasizing their potential biological applications and underscoring the deep-sea as a frontier for future pharmaceutical research.
Collapse
Affiliation(s)
- Salman Khan
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Muhammad Zain Ul Arifeen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Li Y, Zou ZB, Li Y, Xie CL, Zhong TH, Li LS, Yang XW. Chemical Constituents of Deep-Sea Derived Fungus Pseudogymnoascus hyalinus and Their Ferroptosis Inhibitory Activity. Chem Biodivers 2025:e01289. [PMID: 40393429 DOI: 10.1002/cbdv.202501289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
Four new polyketides including one indanone (1), one isobenzofuranone (2), and two naphthoquinones (3 and 4) were isolated from the deep-sea-derived fungus Pseudogymnoascus hyalinus, along with 20 known compounds (5-24). The structures of new compounds were established by comprehensive analyses of their 1D and 2D NMR, HRESIMS, as well as TD-DFT-ECD. Compounds 5, 6, and 10 displayed potent inhibitory effects against RSL3 induced ferroptosis with EC50 values of 4.74, 1.55, and 3.72 µM, respectively.
Collapse
Affiliation(s)
- You Li
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zheng-Biao Zou
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Yan Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chun-Lan Xie
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Tian-Hua Zhong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Li-Sheng Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xian-Wen Yang
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Shlyk NP, Yurchenko EA, Leshchenko EV, Chingizova EA, Chingizov AR, Chausova VE, Kirichuk NN, Khudyakova YV, Pivkin MV, Antonov AS, Popov RS, Isaeva MP, Yurchenko AN. The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities. J Antibiot (Tokyo) 2025; 78:314-329. [PMID: 39984736 DOI: 10.1038/s41429-025-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC50) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC50 of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.
Collapse
Affiliation(s)
- Nadezhda P Shlyk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Mikhail V Pivkin
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
| |
Collapse
|
4
|
Wei J, Chen X, Ma Y, Wu B. Chevalierlin: A spirocyclic alkaloid from a hydrothermal vent associated fungus Aspergillus chevalieri TW132-65. PHYTOCHEMISTRY 2025; 229:114295. [PMID: 39368769 DOI: 10.1016/j.phytochem.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
A previously undescribed spirodiketopiperazine-indole alkaloid, chevalierlin (1), two pairs of previously undescribed dihydroisocoumarin enantiomers eurotiumides H-I (2-3), as well as six related known compounds (4-9) were isolated from the culture of a hydrothermal vent associated fungus Aspergillus chevalieri TW132-65. Their structures were unambiguously determined by NMR, mass spectrometry, and ECD calculations. Chevalierlin (1) exhibits moderate cytotoxic activities with IC50 values of 6.20 ± 0.05 μM and 7.68 ± 0.01 μM against Namalwa and Raji cell lines.
Collapse
Affiliation(s)
- Jihua Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Proya Cosmetics Co., Ltd., Hangzhou, 321000, China
| | - Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
5
|
Chen XD, Li X, Li XM, Yang SQ, Wang BG. Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4. Mar Drugs 2024; 22:574. [PMID: 39728148 DOI: 10.3390/md22120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (1-4) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 1-6 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
6
|
Zhao ZY, Wan J, Chen HW, Sun ZS, Tao YT, Tong Y, Zang Y, Choo YM, Wang P, Li YL, Jiang CX, Li J, Xiong J, Li J, Jin ZX, Hu JF. Major specialized natural products from the endangered plant Heptacodium miconioides, potential medicinal uses and insights into its longstanding unresolved systematic classification. PHYTOCHEMISTRY 2024; 228:114259. [PMID: 39186996 DOI: 10.1016/j.phytochem.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
A comprehensive phytochemical investigation of the flower buds and leaves/twigs of Heptacodium miconioides, a cultivated ornamental plant native to China and categorized as 'vulnerable', has led to the isolation of 45 structurally diverse compounds, which comprise 18 phenylpropanoids (1-4, 7-20), 11 pentacyclic triterpenoids (5, 6, 21-29), eight secoiridoid glycosides (30-37), three quinic acid derivatives (38-40), and a few miscellaneous components (41-45). Among them, (+)-α-intermedianol (1), (+)-holophyllol A (2), and (-)-pseudolarkaemin A (3) represent previously unreported enantiomeric lignans, while (+)-7'(R)-hydroxymatairesinol (4) is an undescribed naturally occurring lignan. Heptacoacids A (5) and B (6) are undescribed 24-nor-urs-28-oic acid derivatives. Their chemical structures were determined by 2D-NMR, supplemented by evidence from specific rotations and circular dichroism spectra. Given the uncertainty surrounding the systematic position of Heptacodium, integrative taxonomy (ITA), a method utilized to define contentious species, is applied. Chemotaxonomy, a vital aspect of ITA, becomes significant. By employing hierarchical clustering analysis (HCA) and syntenic pattern analysis methods, a taxonomic examination based on the major specialized natural products from the flower buds of H. miconioides and two other Caprifoliaceae plants (i.e., Lonicera japonica and Abelia × grandiflora) could offer enhanced understanding of the systematic placement of Heptacodium. Additionally, compounds 39 and 40 displayed remarkable inhibitory activities against ATP-citrate lyase (ACL), with IC50 values of 0.11 and 1.10 μM, respectively. In summary, the discovery of medical properties and refining systematic classification can establish a sturdy groundwork for conservation efforts aimed at mitigating species diversity loss while addressing human diseases.
Collapse
Affiliation(s)
- Ze-Yu Zhao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiang Wan
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Hao-Wei Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhong-Shuai Sun
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yu-Tian Tao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County & Dapanshan National Natural Reserve, Zhejiang, 322300, China
| | - Yue-Ling Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Chun-Xiao Jiang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Junming Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
7
|
Liu C, Li J, Wang D, Liu J, Liu K, Li P, Zhang Y. Recent Advances of the Zebrafish Model in the Discovery of Marine Bioactive Molecules. Mar Drugs 2024; 22:540. [PMID: 39728115 PMCID: PMC11678508 DOI: 10.3390/md22120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Marine natural products are increasingly utilized in nutrition, cosmetics, and medicine, garnering significant attention from researchers globally. With the expansion of marine resource exploration in recent years, the demand for marine natural products has risen, necessitating rapid and cost-effective activity evaluations using model organisms. Zebrafish, a valuable vertebrate model, has become an efficient tool for screening and identifying safe, active molecules from marine natural products. This review, based on nearly 10 years of literature, summarizes the current status and progress of zebrafish models in evaluating marine natural product bioactivity. It also highlights their potential in exploring marine resources with health benefits, offering a reference for the future development and utilization of marine biological resources.
Collapse
Affiliation(s)
- Changyu Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jiaxun Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Dexu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jibin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| |
Collapse
|
8
|
Shi J, Yu M, Chen W, Chen S, Qiu Y, Xu Z, Wang Y, Huang G, Zheng C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Mar Drugs 2024; 22:321. [PMID: 39057430 PMCID: PMC11277891 DOI: 10.3390/md22070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.
Collapse
Affiliation(s)
- Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhenyang Xu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
9
|
Zhu CS, Li XM, Yang SQ, Liu YW, Wang BG, Li X. New Hydroxyphenylacetic Acids and α-Pyrone Derivative from the Deep-Sea Cold Seep Sediment-Derived Fungus Penicillium corylophilum CS-682. Chem Biodivers 2024; 21:e202400584. [PMID: 38544421 DOI: 10.1002/cbdv.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024]
Abstract
Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.
Collapse
Affiliation(s)
- Chi-Sheng Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Yi-Wei Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| |
Collapse
|
10
|
Miao X, Hong L, Ju Z, Liu H, Shang R, Li P, Liu K, Cheng B, Jiao W, Xu S, Lin H. Marchaetoglobins A-D: Four Cytochalasans with Proangiogenic Activity from the Marine-Sponge-Associated Fungus Chaetomium globosum 162105. ACS OMEGA 2024; 9:22450-22458. [PMID: 38799354 PMCID: PMC11112690 DOI: 10.1021/acsomega.4c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Four new cytochalasans, marchaetoglobins A-D (1-4), along with five known compounds (5-9), were isolated from the marine-sponge-associated fungus Chaetomium globosum 162105. Compounds 1-4 represent examples of 19,20-seco-chaetoglobosins, of which compound 1 is the first furan-containing cytochalasan. Their structures and absolute configurations were elucidated by extensive spectroscopic analyses and electronic circular dichroism calculations. Compounds 5, 8, and 9 displayed weak to moderate antibacterial activities against Bacillus thuringiensis, Edwardsiella piscicida, Vibrio alginolyticus, and Pseudomonas syringae pv. actinidiae with minimum inhibitory concentration values ranging from 5 to 25 μg/mL. In addition, compounds 2, 3, and 5 showed potent in vivo proangiogenic activity in transgenic zebrafish, comparable to the positive control.
Collapse
Affiliation(s)
- Xianxian Miao
- Department
of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lili Hong
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhiran Ju
- Institute
of Pharmaceutical Science and Technology, Collaborative Innovation
Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyan Liu
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruyi Shang
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peihai Li
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Bin Cheng
- Institute
of Marine Biomedicine, Shenzhen Polytechnic
University, Shenzhen 518055, China
| | - Weihua Jiao
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shihai Xu
- Department
of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Houwen Lin
- State
Key Laboratory of Cancer Gene and Related Gene, Research Center for
Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
11
|
Li XD, Li XM, Wang BG, Li X. Antimicrobial sesterterpenoids with a unique 5/8/6/5 tetracyclic carbon-ring-system and diepoxide polyketides from a deep sea-sediment-sourced fungus Chaetomium globosum SD-347. Org Biomol Chem 2024; 22:3979-3985. [PMID: 38691112 DOI: 10.1039/d4ob00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Dong Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
12
|
Wu Z, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar Drugs 2024; 22:204. [PMID: 38786595 PMCID: PMC11122946 DOI: 10.3390/md22050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 μg/mL.
Collapse
Affiliation(s)
- Zhenger Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
13
|
Zhang Z, Li X, Song Q, Li Y, Tian X, Ali S, Yao Y, Li P, Wang Z, Zheng H. Asymmetric Total Synthesis of (+)-Chuanxiongnolide L1 via a Stereoselective Oxidative Dearomatization/Diels-Alder Strategy. Org Lett 2024; 26:2928-2933. [PMID: 38551465 DOI: 10.1021/acs.orglett.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The first asymmetric total synthesis of chuanxiongnolide L1 was achieved in 16 steps and 1.9% overall yield by employing a bioinspired chiral auxiliary strategy. The key steps involving asymmetric oxidative dearomatization of chiral amino ether and subsequent asymmetric Diels-Alder reaction of the resulting masked chiral ortho-benzoquinone were adopted.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Qingyan Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuerong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiqing Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Sajjad Ali
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuan Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengshen Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
14
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2022. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:399-414. [PMID: 38151899 DOI: 10.1080/10286020.2023.2288939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
The new natural products reported in 2022 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2022 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Li Q, Fu A, Dong J, Xiao Y, Dai B, Wei M, Huang Z, Liu J, Chen C, Zhu H, Lu Y, Li D, Zhang Y. Three new Furano-lactones from the endophytic fungus Aspergillus nidulans. Fitoterapia 2024; 173:105790. [PMID: 38158160 DOI: 10.1016/j.fitote.2023.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/02/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Three new furano-lactones, asperilactones A-C (1-3), and two known compounds silvaticol (4) and violaceic acid (5) were isolated from an ethanol extract of Aspergillus nidulans, a fungus isolated from the Annelida Whitmania pigra Whitman (Haemopidae). Their structures were elucidated by a combination of spectroscopy, ECD calculations, comparing optical rotation values, and single-crystal X-ray diffraction analyses. Asperilactone A (1) represented the first example of furano-lactone with an unusual 2-thia-6-oxabicyclo[3.3.0]octane ring system. Asperilactones A and B showed weak toxicity against the HL-60 and RKO.
Collapse
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiaxin Dong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bingbing Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zijian Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Lu
- Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
16
|
Ying Z, Li XM, Yang SQ, Li HL, Li X, Wang BG, Meng LH. Pseudallenes A and B, new sulfur-containing ovalicin sesquiterpenoid derivatives with antimicrobial activity from the deep-sea cold seep sediment-derived fungus Pseudallescheria boydii CS-793. Beilstein J Org Chem 2024; 20:470-478. [PMID: 38440169 PMCID: PMC10910587 DOI: 10.3762/bjoc.20.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Pseudallenes A and B (1 and 2), the new and rare examples of sulfur-containing ovalicin derivatives, along with three known analogues 3-5, were isolated and identified from the culture extract of Pseudallescheria boydii CS-793, a fungus obtained from the deep-sea cold seep sediments. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis confirmed and established the structures and absolute configurations of compounds 1-3, thus providing the first characterized crystal structure of an ovalicin-type sesquiterpenoid. In the antimicrobial assays, compounds 1-3 showed broad-spectrum inhibitory activities against several plant pathogens with MIC values ranging from 2 to 16 μg/mL.
Collapse
Affiliation(s)
- Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
17
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
18
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
19
|
Yan LH, Li PH, Li XM, Yang SQ, Liu KC, Zhang Y, Wang BG, Li X. Bialorastins A-F, highly oxygenated and polycyclic andrastin-type meroterpenoids with proangiogenic activity from the deep-sea cold-seep-derived fungus Penicillium bialowiezense CS-283. Bioorg Chem 2024; 143:107073. [PMID: 38176375 DOI: 10.1016/j.bioorg.2023.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Six new highly oxygenated and polycyclic andrastin-type meroterpenoids, namely, bialorastins A-F (1-6), were discovered from the culture of Penicillium bialowiezense CS-283, a fungus isolated from the deep-sea cold seep squat lobster Shinkaia crosnieri. The planar structures and absolute configurations of these compounds were determined by detailed analysis of spectroscopic data, single crystal X-ray diffraction, and TDDFT-ECD calculations. Structurally, bialorastin A (1) represents a rare 17-nor-andrastin that possesses an unusual 2-oxaspiro[4.5]decane-1,4-dione moiety with a unique 6/6/6/6/5 polycyclic system, while bialorastin B (2) is also a 17-nor-andrastin featuring a gem-propane-1,2-dione moiety. Additionally, bialorastins C-E (3-5) possess a 6/6/6/6/5/5 fused hexacyclic skeleton, characterized by distinctive 3,23-acetal/lactone-bridged functionalities. All isolated compounds were evaluated for their proangiogenic activities in transgenic zebrafish. Compound 3 exhibited significant proangiogenic activity, which notably increased the number and length of intersegmental blood vessels in model zebrafish in a dose-dependent manner at concentrations of 20 and 40 μM. On a molecular scale, the tested compounds were modeled through molecular docking to have insight into the interactions with the possible target VEGFR2. Mechanistically, RT-qPCR results revealed that compound 3 could promote angiogenesis via activating VEGFR2 and subsequently activating the downstream PI3K/AKT and MAPK signaling pathways. These findings indicate that 3 could be a potential lead compound for developing angiogenesis agents.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Pei-Hai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Ke-Chun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Yun Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China.
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China.
| |
Collapse
|
20
|
Zhang XQ, Lu ZH, Tang GM, Duan LP, Wang ZH, Guo ZY, Proksch P. Prunolactones A-G, proangiogenic isocoumarin derivatives with an unusual 6/6/6/6/6 spiropentacyclic skeleton from the endophytic fungus Phomopsis prunorum. Bioorg Chem 2023; 141:106898. [PMID: 37801783 DOI: 10.1016/j.bioorg.2023.106898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Seven novel isocoumarins, prunolactones A-G (1-7), featuring an unusual 6/6/6/6/6 spiropentacyclic skeleton, together with two biosynthetic precursors phomopsilactone (8) and methyl 3-epi-shikimate (9), were isolated from the endophytic fungus Phomopsis prunorum guided by UPLC-QTOF-MS and 1H NMR spectroscopic analytical techniques. Their structures including absolute configurations of 1-7 were elucidated based on extensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Biogenetically, compounds 1-7 are proposed to be derived from polyketide and shikimate pathways via key intermolecular Diels - Alder reactions. Compounds 2, 3, and 7 showed significant in vivo proangiogenic activity in transgenic zebrafish.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China; Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China.
| | - Zhen-Hong Lu
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Guan-Mei Tang
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Li-Ping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, People's Republic of China
| | - Zhao-Hang Wang
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China; Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
21
|
Zhang Y, Zhao X, Cao Y, Chen M, Shi Z, Wu M, Feng H, Sun L, Ma Z, Tan X, Chen G, Qi C, Zhang Y. Bioactive Indole Alkaloid from Aspergillus amoenus TJ507 That Ameliorates Hepatic Ischemia/Reperfusion Injury. JOURNAL OF NATURAL PRODUCTS 2023; 86:2059-2064. [PMID: 37560942 DOI: 10.1021/acs.jnatprod.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a major factor contributing to the failure of hepatic resection and liver transplantation. As part of our ongoing investigation into bioactive compounds derived from fungi, we isolated eight indole alkaloids (1-8) from the endophytic fungus Aspergillus amoenus TJ507. Among these alkaloids, one previously undescribed compound, amoenamide D (1), was identified. The planar structure of 1 was elucidated by extensive spectroscopic analysis, including HRESIMS and NMR spectra. The absolute configuration of 1 was elucidated by using electronic circular dichroism calculations. Notably, in the CoCl2-induced hepatocyte damage model, notoamide Q (3) exhibited significant anti-hypoxia injury activity. Furthermore, in a murine hepatic ischemia/reperfusion injury model, treatment with 3 prevents IRI-induced liver damage and hepatocellular apoptosis. Consequently, 3 might serve as a potential lead compound to prevent hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Zhao
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Wu
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hao Feng
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Lingjuan Sun
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibo Ma
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaosheng Tan
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Gang Chen
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
22
|
Dong Y, Jin E, Wang R, Bao Y, Li H. New Olimycins from a Cold-Seep-Derived Streptomyces olivaceus. Chem Biodivers 2023; 20:e202300689. [PMID: 37354440 DOI: 10.1002/cbdv.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Cold-seeps are areas of the ocean floor in which hydrogen sulfide and methane are released into the open water. The cold-seep microbes are an emerging source of novel bioactive natural products. Four new ansa-ring opened linear ansamycin analogues, named olimycins E-H (1-4) were isolated from the cold-seep-derived Streptomyces olivaceus OUCLQ19-3. The planar and stereochemical structures of the isolated compounds were elucidated based on extensive MS and NMR spectroscopic analyses together with ECD calculations.
Collapse
Affiliation(s)
- Yun Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Enjing Jin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Runyi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yilei Bao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
23
|
Yang J, Hui Y, Chen Z, Chen G, Song X, Sun Z, Han C, Chen W. Four Undescribed Pyranones from the Scutellaria formosana-Derived Endophytic Fungi Ascomycota sp. FAE17. Molecules 2023; 28:5388. [PMID: 37513260 PMCID: PMC10383492 DOI: 10.3390/molecules28145388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Four undescribed pyranone derivatives, named ascomycopyrones A-D (1-4), as well as one known analogue simplicilopyrone (5) (this is the first study to report the absolute configuration), were isolated from the endophytic fungus Ascomycota sp. FAE17 derived from the flowers of Scutellaria formosa. The structures of these pyranones were identified by comprehensive spectroscopic and MS analyses, and the absolute configurations were determined by their experimental and quantum chemical electronic circular dichroism (ECD) calculations. All isolated compounds were tested for various bioactivities, including antibacterial, cytotoxic activity, and NO inhibitory activity. Unfortunately, none of the compounds showed significant bioactivities.
Collapse
Affiliation(s)
- Jianni Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhaoxia Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xiaoping Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhenfan Sun
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571158, China
| | - Changri Han
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571158, China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
24
|
Dong YL, Li XM, Shi XS, Wang YR, Wang BG, Meng LH. Diketopiperazine Alkaloids and Bisabolene Sesquiterpenoids from Aspergillus versicolor AS-212, an Endozoic Fungus Associated with Deep-Sea Coral of Magellan Seamounts. Mar Drugs 2023; 21:md21050293. [PMID: 37233487 DOI: 10.3390/md21050293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Two new quinazolinone diketopiperazine alkaloids, including versicomide E (2) and cottoquinazoline H (4), together with ten known compounds (1, 3, and 5-12) were isolated and identified from Aspergillus versicolor AS-212, an endozoic fungus associated with the deep-sea coral Hemicorallium cf. imperiale, which was collected from the Magellan Seamounts. Their chemical structures were determined by an extensive interpretation of the spectroscopic and X-ray crystallographic data as well as specific rotation calculation, ECD calculation, and comparison of their ECD spectra. The absolute configurations of (-)-isoversicomide A (1) and cottoquinazoline A (3) were not assigned in the literature reports and were solved in the present work by single-crystal X-ray diffraction analysis. In the antibacterial assays, compound 3 exhibited antibacterial activity against aquatic pathogenic bacteria Aeromonas hydrophilia with an MIC value of 18.6 μM, while compounds 4 and 8 exhibited inhibitory effects against Vibrio harveyi and V. parahaemolyticus with MIC values ranging from 9.0 to 18.1 μM.
Collapse
Affiliation(s)
- Yu-Liang Dong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xiao-Shan Shi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Yi-Ran Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| |
Collapse
|
25
|
Li YH, Mándi A, Li HL, Li XM, Li X, Meng LH, Yang SQ, Shi XS, Kurtán T, Wang BG. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:223-231. [PMID: 37275535 PMCID: PMC10232390 DOI: 10.1007/s42995-023-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/27/2023] [Indexed: 06/07/2023]
Abstract
Verrucosidins, a methylated α-pyrone class of polyketides rarely reported upon, have been implicated in one or more neurological diseases. Despite the significance of verrucosidins as neurotoxins, the absolute configurations of most of the derivatives have not been accurately characterized yet. In this study, three pairs of C-9 epimeric verrucosidin derivatives, including the known compounds penicyrones A and B (1a/1b) and 9-O-methylpenicyrones A and B (2a/2b), the new compounds 9-O-ethylpenicyrones A and B (3a/3b), together with the related known derivative verrucosidin (4), were isolated and identified from the culture extract of Penicillium cyclopium SD-413, which was obtained from the marine sediment collected from the East China sea. Their structures were established based on an in-depth analysis of nuclear magnetic resonances (NMR) and mass spectroscopic data. Determination of the absolute configurations of these compounds was accomplished by Mosher's method and time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (ECD) and optical rotation (OR). The configurational assignment of penicyrone A demonstrated that the previously reported C-6 absolute configuration of verrucosidin derivatives needs to be revised from (6S) to (6R). The 9R/9S epimers of compounds 1-3 were found to exhibit growth inhibition against some pathogenic bacteria, indicating that they have potential as lead compounds for the creation of antimicrobial agents. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00173-2.
Collapse
Affiliation(s)
- Yan-He Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Shan Shi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| |
Collapse
|
26
|
Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY, Ma HB, Yang XW. Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 2023; 21:md21040234. [PMID: 37103373 PMCID: PMC10144380 DOI: 10.3390/md21040234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126 along with 34 known compounds (3-36). The structures of the new compounds were established by spectroscopic data. The absolute configuration of 1 was validated by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 and 3.5 μM, respectively, whereas 26, 28, 33, and 34 significantly inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 μM, respectively.
Collapse
Affiliation(s)
- You-Jia Hao
- College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hao-Yu Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hua-Bin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
27
|
Huang X, Wang Y, Zhou L, Wang W, Anjum K, Zhang J, Zhang G, Zhu T, Li D, Che Q. Glycosylated 24-Membered Lactones and Unsaturated Fatty Acids from Cold-Seep-Derived Bacillus sp. HDN 20-1259. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
28
|
Han L, Zheng W, Qian SY, Yang MF, Lu YZ, He ZJ, Kang JC. New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A-G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis. J Fungi (Basel) 2023; 9:393. [PMID: 37108848 PMCID: PMC10144765 DOI: 10.3390/jof9040393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Seven undescribed guaiane-type sesquiterpenoids named biscogniauxiaols A-G (1-7) were isolated from the endophytic fungus Biscogniauxia petrensis on Dendrobium orchids. Their structures were determined by extensive spectroscopic analyses, electronic circular dichroism (EC) and specific rotation (SR) calculations. Compound 1 represented a new family of guaiane-type sesquiterpenoids featuring an unprecedented [5/6/6/7] tetracyclic system. A plausible biosynthetic pathway for compounds 1-7 was proposed. The anti-fungal, anti-inflammatory and multidrug resistance reversal activities of the isolates were evaluated. Compounds 1, 2 and 7 exhibited potent inhibitory activities against Candida albicans with MIC values ranging from 1.60 to 6.30 μM, and suppressed nitric oxide (NO) production with IC50 ranging from 4.60 to 20.00 μM. Additionally, all compounds (100 μg/mL) enhanced the cytotoxicity of cisplatin in cisplatin-resistant non-small cell lung cancer cells (A549/DDP). This study opened up a new source for obtaining bioactive guaiane-type sesquiterpenoids and compounds 1, 2, and 7 were promising for further optimization as multifunctional inhibitors for anti-fungal (C. albicans) and anti-inflammatory purposes.
Collapse
Affiliation(s)
- Long Han
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Wen Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Sheng-Yan Qian
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Ming-Fei Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Yong-Zhong Lu
- Guizhou Institute of Technology, School of Food and Pharmaceutical Engineering, Guiyang 550003, China
| | - Zhang-Jiang He
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Ji-Chuan Kang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| |
Collapse
|
29
|
Yan LH, Du FY, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Indole Diketopiperazine Alkaloids from the Deep-Sea Cold Seep-Derived Fungus Aspergillus chevalieri. Mar Drugs 2023; 21:md21030195. [PMID: 36976244 PMCID: PMC10059655 DOI: 10.3390/md21030195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
A large body of fungal secondary metabolites has been discovered to exhibit potent antibacterial activities with distinctive mechanisms and has the potential to be an untapped resource for drug discovery. Here, we describe the isolation and characterization of five new antibacterial indole diketopiperazine alkaloids, namely 24,25-dihydroxyvariecolorin G (1), 25-hydroxyrubrumazine B (2), 22-chloro-25-hydroxyrubrumazine B (3), 25-hydroxyvariecolorin F (4), and 27-epi-aspechinulin D (5), along with the known analogue neoechinulin B (6) from a fungal strain of deep-sea cold seep-derived Aspergillus chevalieri. Among these compounds, 3 and 4 represented a class of infrequently occurring fungal chlorinated natural products. Compounds 1-6 showed inhibitory activities against several pathogenic bacteria with MIC values ranging from 4 to 32 μg/mL. It was revealed that compound 6 could induce structural damage to the Aeromonas hydrophila cells based on the observation by scanning electron microscopy (SEM), which led to the bacteriolysis and death of A. hydrophila, suggesting that neoechinulin B (6) might be a potential alternative to novel antibiotics development.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao 266109, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
30
|
Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, Nan Y, Wang Z, Zhou H, Zhou Q, Zhang Y. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem 2023; 21:2236-2242. [PMID: 36815264 DOI: 10.1039/d2ob02220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 μM, while compound 8 exhibited moderate immunosuppressive activity in vitro.
Collapse
Affiliation(s)
- Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyang Nan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hongjian Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Ying Z, Li XM, Yang SQ, Wang BG, Li HL, Meng LH. New Polyketide and Sesquiterpenoid Derivatives from the Magellan Seamount-Derived Fungus Penicillium rubens AS-130. Chem Biodivers 2023; 20:e202300229. [PMID: 36866699 DOI: 10.1002/cbdv.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Rubenpolyketone A (1), a polyketide featuring a new carbon skeleton having cyclohexenone condensed with a methyl octenone chain and a new linear sesquiterpenoid, chermesiterpenoid D (2), together with seven known secondary metabolites (3-9) were isolated and identified from the Magellan Seamount-derived fungus Penicillium rubens AS-130. Their structures were determined based on detailed analysis of NMR and mass spectroscopic data and the absolute configurations of these two new compounds were elucidated by the combination of quantum mechanical (QM)-NMR and time-dependent density functional (TDDFT) ECD calculation approaches. Chermesiterpenoids B (3) and C (4) showed potent inhibitory activities against the aquatic pathogen Vibrio anguillarum with MIC values of 0.5 and 1 μg/mL, respectively, while chermesin F (6) exhibited activity against Escherichia coli with MIC value of 1 μg/mL.
Collapse
Affiliation(s)
- Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China E-mails.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| |
Collapse
|
32
|
Li YH, Yang SQ, Li XM, Li X, Wang BG, Li H. Five new verrucosidin derivatives from Penicillium polonicum, a deep-sea cold-seep sediment isolated fungus. Fitoterapia 2023; 165:105387. [PMID: 36493945 DOI: 10.1016/j.fitote.2022.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Five new verrucosidin derivatives, poloncosidins G-K (1-5), were isolated from the deep sea cold-seep sediment-derived fungus Penicillium polonicum CS-252. Their planar structures were elucidated by discreet analysis of the NMR spectroscopic and HRESIMS spectrometric data. The absolute configurations of compounds 1-5 were deduced from the combination of the modified Mosher's method and quantum chemical calculations of their ECD and NMR (with DP4+ probability analysis) data. The antimicrobial activities against several human- and aquatic-pathogenic bacteria of all the isolated compounds were evaluated and the structure-bioactivity relationship was briefly discussed.
Collapse
Affiliation(s)
- Yan-He Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China; College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China; College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Honglei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China.
| |
Collapse
|
33
|
Li X, Gong YX, Feng L, Wang XJ, Wang JW, Zhang AX, Tan NH, Wang Z. Neuropyrones A-E, five undescribed α-pyrone derivatives with tyrosinase inhibitory activity from the endophytic fungus Neurospora dictyophora WZ-497. PHYTOCHEMISTRY 2023; 207:113579. [PMID: 36586529 DOI: 10.1016/j.phytochem.2022.113579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Five undescribed α-pyrone derivatives, named neuropyrones A-E, were isolated from the endophytic fungus Neurospora dictyophora WZ-497 derived from the stems of Aster tataricus L. f. The structures of these α-pyrones with absolute configurations were determined by comprehensive spectroscopic analysis and computational calculations. All isolated compounds were tested for various bioactivities, including tyrosinase inhibitory activity. The results showed that neuropyrones A-C displayed potent inhibitory effects on tyrosinase with IC50 values of 0.38 ± 0.07, 0.49 ± 0.06, and 0.12 ± 0.01 mM, respectively, which were comparable to that of the positive control, kojic acid (IC50 = 0.14 ± 0.021 mM). A molecular docking study revealed the interaction between 3 and the His263, His85, Val283, Asn260, Phe264, and Val248 residues of tyrosinase.
Collapse
Affiliation(s)
- Xin Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Xiang Gong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin-Jia Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing-Wen Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - An-Xin Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
34
|
Xie MM, Jiang JY, Zou ZB, Xu L, Zhang Y, Wang CF, Liu CB, Yan QX, Liu Z, Yang XW. Chemical Constituents of the Deep-Sea-Derived Fungus Cladosporium oxysporum 170103 and Their Antibacterial Effects. Chem Biodivers 2022; 19:e202200963. [PMID: 36436828 DOI: 10.1002/cbdv.202200963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
The Cladosporium fungi, one of the largest genera of dematiaceous hyphomycetes, could produce various bioactive secondary metabolites. From the AcOEt-soluble extract of Cladosporium oxysporum 170103, three new secopatulolides (1-3) and thirteen known compounds (4-16) were obtained. Their structures were established by detailed analysis of the NMR and HR-ESI-MS data. All sixteen compounds were tested for antibacterial activity against Vibrio parahemolyticus, ergosterol (10) presented moderate effect with the minimum inhibitory concentration (MIC) of 32 μM. It can destruct the membrane integrity of Vibrio parahemolyticus to change the cell shape.
Collapse
Affiliation(s)
- Ming-Min Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Jia-Yang Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China.,College of Life Sciences, Hainan University, 58 People's Avenue, Haikou, Hainan 570228, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chao-Feng Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Cheng-Bin Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zhu Liu
- College of Life Sciences, Hainan University, 58 People's Avenue, Haikou, Hainan 570228, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
35
|
Qin ML, Gao W, Wu H, Yu HF, Hu WY, Xiao CF, Zhang RP, Ding CF. Novel indole alkaloids from Rauvolfia yunnanensis, inhibiting ESBL producing Escherichia coli by targeting cell membrane integrity. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Discovery of natural polyphenols from the wild vegetable Suaeda salsa L. with potential cardioprotective functions. Food Chem 2022; 405:134968. [DOI: 10.1016/j.foodchem.2022.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
|
37
|
Aromatic Polyketides from the Deep-Sea Cold-Seep Mussel Associated Endozoic Fungus Talaromyces minioluteus CS-138. Mar Drugs 2022; 20:md20080529. [PMID: 36005532 PMCID: PMC9409973 DOI: 10.3390/md20080529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Five new aromatic polyketides, including a unique benzofuran derivative, talarominine A (1), and four chromone analogs talamins A–D (2–5), along with one known related metabolite, 5-hydroxy-7-methoxy-2,3-dimethylchromone (6), were isolated and identified from the Talaromyces minioluteus CS-138, an endozoic fungus obtained from the deep-sea cold seep mussel Gigantidas platifrons. Their chemical structures were elucidated by detailed analysis of their NMR spectra, HRESIMS and X-ray crystallographic data, and by comparison with literature data as well. The antibacterial and DPPH scavenging activities of compounds 1–6 were evaluated. Compounds 1–3 showed inhibitory activity against some of the tested bacteria whereas compounds 2 and 5 showed potent DPPH radical scavenging activities, which were better than that of the positive control butylated hydroxytoluene (BHT). This work is likely the first report on marine natural products of mussel-derived fungus living in cold seep environments.
Collapse
|
38
|
Fan Y, Jiang C, Zhang Y, Ma Z, Li P, Guo L, Feng T, Zhou L, Xu L. Pro-angiogenic New Chloro-Azaphilone Derivatives From the Hadal Trench-Derived Fungus Chaetomium globosum YP-106. Front Microbiol 2022; 13:943452. [PMID: 35935205 PMCID: PMC9355395 DOI: 10.3389/fmicb.2022.943452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Five new chloro-azaphilones, chaetofanixins A–E (1–5), and five known analogs (6–10) were isolated and identified from the hadal trench-derived fungus Chaetomium globosum YP-106. The structure of chaetofanixin E (5) is unique and interesting, bearing a highly rigid 6/6/5/3/5 penta-cyclic ring system, which is first encountered in natural products. The structures of these compounds, including absolute configurations, were determined based on the spectroscopic analysis, electronic circular dichroism (ECD) calculations, and analysis of biogenetic origins. Compounds 1–7 significantly promoted angiogenesis in a dose-dependent manner, and thus, these compounds might be used as promising molecules for the development of natural cardiovascular disease agents.
Collapse
Affiliation(s)
- Yaqin Fan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunjiao Jiang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhiheng Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Peihai Li
- Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ting Feng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Liman Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
- *Correspondence: Liman Zhou,
| | - Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Lili Xu,
| |
Collapse
|
39
|
Qi J, Han H, Sui D, Tan S, Liu C, Wang P, Xie C, Xia X, Gao JM, Liu C. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Fact 2022; 21:146. [PMID: 35843946 PMCID: PMC9290255 DOI: 10.1186/s12934-022-01872-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. Results We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an l-tryptophan-l-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from l-tryptophan and l-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. Conclusions In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01872-8.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.,Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Dan Sui
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Shengnan Tan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Changli Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.
| |
Collapse
|
40
|
Lv D, Xia J, Guan X, Lai Q, Zhang B, Lin J, Shao Z, Luo S, Zhangsun D, Qin JJ, Wang W. Indole Diketopiperazine Alkaloids Isolated From the Marine-Derived Fungus Aspergillus chevalieri MCCC M23426. Front Microbiol 2022; 13:950857. [PMID: 35875553 PMCID: PMC9301495 DOI: 10.3389/fmicb.2022.950857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Two new indole diketopiperazines (1-2) obtained from the fermentation culture of a deep-sea-derived fungus Aspergillus chevalieri MCCC M23426, were characterized, together with nine biogenetic related compounds (3-11). The structures of 1-2 were assigned based on NMR, MS, NMR calculation, DP4+ analysis, and ECD calculation. The bioactive assay showed that compounds 1, 5-7 significantly inhibited the growth of Staphylococcus aureus. Meanwhile, compound 8 potently reduced the cell viability of gastric cancer cell MKN1 with an IC50 value of 4.6 μM.
Collapse
Affiliation(s)
- Dongli Lv
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Beibei Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jianhui Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
41
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35708284 DOI: 10.1039/d2np90019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chevalinulin A from Aspergillus chevalieri.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|