1
|
Chang X, Han XW, Zhu HT, Zhou NN, Yang N, Shen CP, Qi C, Zhou AX, Feng HT, Tang BZ. Phosphinylation/cyclization of propynolaldehydes to isobenzo-furanylic phosphine oxides displaying AIE properties. Org Biomol Chem 2025; 23:3154-3162. [PMID: 40035296 DOI: 10.1039/d5ob00061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Investigating organic reactions to synthesize novel molecules that exhibit aggregation-induced emission (AIE) characteristics is becoming a research hotspot. Herein, we develop a one-pot phosphinylation/cyclization reaction between propynolaldehydes and diarylphosphine oxides to generate isobenzofuran-substituted phosphine oxides (IBFPOs) displaying AIE properties. Such a reaction possesses benefits such as metal-free synthesis, simple operation and wide substrate applicability. Further structural modifications of the products have been implemented through the palladium-catalyzed Sonogashira reaction, Ullmann coupling and Diels-Alder addition. Furthermore, these AIE luminogens (AIEgens), which have satisfactory quantum yields and tunable emission covering the entire visible region, can be employed for the cell imaging of lipid droplets in HeLa cells. Notably, quantitative evaluation of the phototherapy effect demonstrates that one of these presented AIEgens, namely IBFPO-3j, displays high type-I reactive oxygen species (ROS) generation efficiency, enabling its effective application in photodynamic therapy in a hypoxic environment.
Collapse
Affiliation(s)
- Xin Chang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Xiao-Wen Han
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Hai-Tao Zhu
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Ni-Ni Zhou
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Nan Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Cheng-Ping Shen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China.
| |
Collapse
|
2
|
Fu Y, Zeng S, Wang Z, Huang H, Zhao X, Li M. Mechanisms of Copper-Induced Autophagy and Links with Human Diseases. Pharmaceuticals (Basel) 2025; 18:99. [PMID: 39861161 PMCID: PMC11768742 DOI: 10.3390/ph18010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions. Since the success of platinum-based compounds in the clinical treatment of various types of neoplasias, metal-based drugs have shown encouraging perspectives for drug development. Compared to platinum, copper is an essential intracellular trace element that may have better prospects for drug development than platinum. Recently, the potential therapeutic role of copper-induced autophagy in chronic diseases such as Parkinson's, Wilson's, and cardiovascular disease has already been demonstrated. In brief, copper ions, numerous copper complexes, and copper-based nano-preparations could induce autophagy, a lysosome-dependent process that plays an important role in various human diseases. In this review, we not only focus on the current advances in elucidating the mechanisms of copper or copper-based compounds/preparations on the regulation of autophagy but also outline the association between copper-induced autophagy and human diseases.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhenlin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiting Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Bharath Kumar P, Raju CE, Roy S, Anoop A, Chandra R, Sridhar B, Karunakar GV. Rh(III)-Catalyzed Chemoselective [4 + 2] Annulations for the Synthesis of [1,3]Oxazinoindolones: A Combined Experimental and Computational Study. Org Lett 2024; 26:8680-8685. [PMID: 39364934 DOI: 10.1021/acs.orglett.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The interaction of N-alkoxy-1H-indole-1-carboxamides with transition metals leads to indole-fused heterocyclic scaffolds through directing group leaving/migration, [3 + 2], N-C2 [4 + 1], and [4 + 2] annulations. However, the corresponding O-C2 [4 + 2] annulation reactions have never been reported. Herein, we report the chemoselective annulation of N-alkoxy-1H-indole-1-carboxamides catalyzed by Rh(III), affording [1,3]oxazinoindolones through a hitherto unknown reaction pathway. This unprecedented C2 oxygen cyclization, rather than the known C2 nitrogen cyclization to form oxazinoindolones via five key steps, has been explained using density functional theory.
Collapse
Affiliation(s)
- Perla Bharath Kumar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajesh Chandra
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
4
|
Karunakar GV, Bharath Kumar P, Rami Reddy PV, Sunil K, Emmaniel Raju C, Sridhar B. Gold(I)-Catalyzed Regioselective Synthesis of Indenylidene Derivatives via 1,5-Acryl Migration. Chem Asian J 2024; 19:e202400310. [PMID: 38715395 DOI: 10.1002/asia.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Indexed: 06/12/2024]
Abstract
A novel gold (I)-catalyzed synthetic strategy has been achieved for an efficient construction of indenylidene derivatives from substituted 1,6-diynes. This reaction describes the unique reactivity of gold catalysis in facilitating the intramolecular [3,3]-sigmatropic rearrangement, 5-exo dig cyclization followed by 1,5-migration of acryl group, resulting in the formation of substituted indenylidenes. Various substituted indenylidenes were successfully synthesized with up to 92 % yields. In this protocol, two new C-C bonds were sequentially formed atom economically in one pot.
Collapse
Affiliation(s)
- Galla V Karunakar
- Fluoro Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
- Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Perla Bharath Kumar
- Fluoro Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
- Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Pammi Venkata Rami Reddy
- Fluoro Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
- Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Komalla Sunil
- Fluoro Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
- Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Chittala Emmaniel Raju
- Fluoro Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
- Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
| |
Collapse
|
5
|
Sreenivasulu G, Sridhar B, Karunakar GV. Dual gold-catalyzed regioselective synthesis of benzofulvenes via 5- endo dig cyclization. Org Biomol Chem 2023; 21:7799-7807. [PMID: 37712351 DOI: 10.1039/d3ob01079a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An efficient dual gold-catalyzed regioselective synthesis of benzofulvenes has been developed from substituted allyloxy 1,5-diynes via 5-endo dig cyclization. In this intramolecular organic transformation a new C-C bond formation occurs and moderate to very good yields are obtained in one pot.
Collapse
Affiliation(s)
- Gottam Sreenivasulu
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
6
|
Karunakar GV, Sunil K, Bharath Kumar P, Chandrappa M, Guduru R, Kantevari S, Sridhar B. Catalyst- and Additive-Free Methodical Ring Expansion Protocol to Access Benzooxepino-Fused Pyrroles. Chem Asian J 2023; 18:e202201071. [PMID: 36567599 DOI: 10.1002/asia.202201071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
An efficient metal-free, additive-free synthetic method was developed to access benzooxepino-fused pyrrole derivatives from alkynyl substituted aziridines. In this organic transformation, two new C-C bonds were formed via initial cleavage of C-C bond of aziridine ring by in situ generated azomethine ylides. Moderate to excellent yields of benzooxepino-fused pyrroles were obtained atom economically in the presence of t-BuOH in one-pot.
Collapse
Affiliation(s)
- Galla V Karunakar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Komalla Sunil
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Perla Bharath Kumar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Muneppa Chandrappa
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
| | - Ravinder Guduru
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
| |
Collapse
|
7
|
Ma X, Mane MV, Cavallo L, Nolan SP. Ruthenium‐Catalyzed Regioselective 1,2‐Hydrosilylation of N‐Heteroarenes. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Manoj V. Mane
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Centre for Nano and Material Sciences Jain (Deemed-to-be University) Jain Global Campus Kanakapura, Bangalore Karnataka 562112 India
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
8
|
Sreenivasulu G, Raju CE, Palaci MS, Sridhar B, Karunakar GV. Synthesis of Isoquinoline-Derived Diene Esters and Quinolin-2(1 H)-ylidene-Substituted 1,5-Diones from Enynones and (Iso) Quinoline N-Oxides. Org Lett 2023; 25:115-119. [PMID: 36583558 DOI: 10.1021/acs.orglett.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient synthetic method was developed to access isoquinoline-derived diene esters from enynones and isoquinoline-N-oxides in an atom-economic manner. The isoquinoline-substituted diene esters were obtained in moderate to excellent yields via [3 + 2]-cycloaddition and isoxazole ring opening followed by a [1,5]-sigmatropic rearrangement reaction, which resulted in one C-C and two C-O bond formations. Further, quinolin-2(1H)-ylidene-substituted 1,5-diones were achieved by reaction of enynones with quinoline-N-oxides in very good to high yields.
Collapse
Affiliation(s)
- Gottam Sreenivasulu
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manda Shareni Palaci
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
9
|
Suzuki M, Terada M, Nakamura I. Copper-catalyzed [1,3]-nitrogen rearrangement of O-aryl ketoximes via oxidative addition of N–O bond in inverse electron flow †. Chem Sci 2023; 14:5705-5711. [PMCID: PMC10231427 DOI: 10.1039/d3sc00874f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The [1,3]-nitrogen rearrangement reactions of O-aryl ketoximes were promoted by N-heterocyclic carbene (NHC)-copper catalysts and BF3·OEt2 as an additive, affording ortho-aminophenol derivatives in good yields. The reaction of substrates with electron-withdrawing substituents on the phenol moiety are accelerated by adding silver salt and modifying the substituent at the nitrogen atom. Density functional theory calculations suggest that the rate-determining step of this reaction is the oxidative addition of the N–O bond of the substrate to the copper catalyst. The negative ρ values of the substituent at both the oxime carbon and phenoxy group indicate that the donation of electrons by the oxygen and nitrogen atoms accelerates the oxidative addition. [1,3]-Nitrogen rearrangement reactions of O-aryl ketoximes was catalytically promoted by IPrCuBr and BF3·OEt2. The oxidative addition of the N–O bond to the Cu catalyst is accelerated by donation of electrons from both nitrogen and oxygen atoms.![]()
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| |
Collapse
|
10
|
Bharath Kumar P, Raju CE, Chandubhai PH, Sridhar B, Karunakar GV. Gold(I)-Catalyzed Regioselective Cyclization to Access Cyclopropane-Fused Tetrahydrobenzochromenes. Org Lett 2022; 24:6761-6766. [DOI: 10.1021/acs.orglett.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Perla Bharath Kumar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Patel Hinal Chandubhai
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|