1
|
Saha N, Kumar A, Debnath BB, Sarkar A, Chakraborti AK. Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles. Curr Top Med Chem 2025; 25:581-644. [PMID: 39844549 DOI: 10.2174/0115680266347975241217112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.
Collapse
Affiliation(s)
- Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Asim Kumar
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, India-122413
| | - Bibhuti Bhusan Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Anirban Sarkar
- Department of Chemistry, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, West Bengal 700006, India
| | - Asit K Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
2
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024; 67:4322-4345. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Fang X, Zhang T, Fang W, Zhang G, Li Y, Li Y. Synthesis of Functionalized Triazoles on DNA via Azide-Acetonitrile "Click" Reaction. Org Lett 2023; 25:8326-8331. [PMID: 37943666 DOI: 10.1021/acs.orglett.3c03404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Triazoles are privileged structural motifs that are embedded in a number of molecules with interesting biological activities. In this work, we developed a practical and general synthetic strategy to construct a medicinally important 5-amino-1,2,3-triazole moiety on DNA by coupling DNA-conjugated azides and monosubstituted acetonitriles via azide-acetonitrile "click" reaction. Under mild reaction conditions, this reaction displayed a broad substrate scope. Most substrates gave moderate-to-excellent conversions. Thus, this DNA-compatible reaction could be employed in practical DNA-encoded library (DEL) construction and potentially expand the chemical space of DNA-encoded libraries.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wei Fang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Wen X, Zhang M, Duan Z, Suo Y, Lu W, Jin R, Mu B, Li K, Zhang X, Meng L, Hong Y, Wang X, Hu H, Zhu J, Song W, Shen A, Lu X. Discovery, SAR Study of GST Inhibitors from a Novel Quinazolin-4(1 H)-one Focused DNA-Encoded Library. J Med Chem 2023; 66:11118-11132. [PMID: 37552553 DOI: 10.1021/acs.jmedchem.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The DNA-encoded library (DEL) is a powerful hit-generation tool in drug discovery. This study describes a new DEL with a privileged scaffold quinazolin-4(3H)-one developed by a robust DNA-compatible multicomponent reaction and a series of novel glutathione S-transferase (GST) inhibitors that were identified through affinity-mediated DEL selection. A novel inhibitor 16 was subsequently verified with an inhibitory potency value of 1.55 ± 0.02 μM against SjGST and 2.02 ± 0.20 μM against hGSTM2. Further optimization was carried out via various structure-activity relationship studies. And especially, the co-crystal structure of the compound 16 with the SjGST was unveiled, which clearly demonstrated its binding mode was quite different from the known GSH-like compounds. This new type of probe is likely to play a different role compared with the GSH, which may provide new opportunities to discover more potent GST inhibitors.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minmin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linghua Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jian Zhu
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Weixiao Song
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Aijun Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
Merrifield JL, Pimentel EB, Peters-Clarke TM, Nesbitt DJ, Coon JJ, Martell JD. DNA-Compatible Copper/TEMPO Oxidation for DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1380-1386. [PMID: 37540561 PMCID: PMC10831869 DOI: 10.1021/acs.bioconjchem.3c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aldehydes are important synthons for DNA-encoded library (DEL) construction, but the development of a DNA-compatible method for the oxidation of alcohols to aldehydes remains a significant challenge in the field of DEL chemistry. We report that a copper/TEMPO catalyst system enables the solution-phase DNA-compatible oxidation of DNA-linked primary activated alcohols to aldehydes. The semiaqueous, room-temperature reaction conditions afford oxidation of benzylic, heterobenzylic, and allylic alcohols in high yield, with DNA compatibility verified by mass spectrometry, qPCR, Sanger sequencing, and ligation assays. Subsequent transformations of the resulting aldehydes demonstrate the potential of this method for robust library diversification.
Collapse
Affiliation(s)
- Justice L. Merrifield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Edward B. Pimentel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Nesbitt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Chai J, Arico-Muendel CC, Ding Y, Pollastri MP, Scott S, Mantell MA, Yao G. Synthesis of a DNA-Encoded Macrocyclic Library Utilizing Intramolecular Benzimidazole Formation. Bioconjug Chem 2023. [PMID: 37216465 DOI: 10.1021/acs.bioconjchem.3c00159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation. A 129-million-member macrocyclic library composed of a privileged benzimidazole core, a dipeptide sequence (natural or non-natural), and linkers of varying length and flexibility was designed and synthesized.
Collapse
Affiliation(s)
- Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher C Arico-Muendel
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michael P Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sarah Scott
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mark A Mantell
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gang Yao
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
8
|
Choudhary A, Viradiya RH, Ghoghari RN, Chikhalia KH. Recent Scenario for the Synthesis of Benzimidazole Moiety(2020–2022). ChemistrySelect 2023. [DOI: 10.1002/slct.202204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Annu Choudhary
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Riddhi H. Viradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Rajnikant N. Ghoghari
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
9
|
Fang X, Liao H, Fan X, Wang Y, Wang H, Zhang G, Fang W, Li Y, Li Y. Incorporation of viridicatin alkaloid-like scaffolds into DNA-encoded chemical libraries. Org Biomol Chem 2023; 21:2162-2166. [PMID: 36799438 DOI: 10.1039/d2ob02278h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Viridicatin alkaloids as natural products have attracted great interest due to their unique core scaffold. To fully exploit their potential application in DNA-encoded chemical libraries that would facilitate drug discovery, we here describe an efficient on-DNA synthesis of viridicatin alkaloid-like scaffolds from isatins and DNA-tagged aldehydes. Promoted by benzenesulfonyl hydrazide, this reaction provided the corresponding DNA-conjugated viridicatin alkaloid-like products in moderate-to-excellent conversion yields, and DNA compatibility validated by enzymatic ligation and qPCR evaluation exhibited the feasible utility of this methodology in DEL synthesis. Cross substrate scope study, together with subsequent on-DNA chemical diversification, further showed the competence of this approach in focused natural product-like encoded library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Wei Fang
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
10
|
Mahdavi-Amiri Y, Hu MSJ, Frias N, Movahedi M, Csakai A, Marcaurelle LA, Hili R. Photoredox-catalysed hydroaminoalkylation of on-DNA N-arylamines. Org Biomol Chem 2023; 21:1463-1467. [PMID: 36655521 DOI: 10.1039/d2ob01956f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An efficient approach to the photoredox-catalysed hydroaminoalkylation between on-DNA secondary N-substituted (hetero)arylamines and vinylarenes has been developed and explored. The methodology was examined with a broad scope of vinylarenes and secondary arylamines to establish a preferred building block profile for the process. Compatible substrates furnished the desired derivitised amine products in modest to excellent conversions and with minimal or no detectable by-products.
Collapse
Affiliation(s)
- Yasaman Mahdavi-Amiri
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Molly S J Hu
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Nicole Frias
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Matina Movahedi
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
11
|
Zhao G, Wang H, Luo J, He X, Xiong F, Li Y, Zhang G, Li Y. Multicomponent DNA-Compatible Synthesis of an Annelated Benzodiazepine Scaffold for Focused Chemical Libraries. Org Lett 2023; 25:665-670. [PMID: 36693020 DOI: 10.1021/acs.orglett.2c04293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Annelated benzodiazepines are attractive drug-like scaffolds with a broad spectrum of biological activities. Incorporation of this heterocyclic core into DNA-encoded chemical libraries (DELs) via multicomponent assembly is highly demanded. Herein, we developed a DNA-compatible method to generate the tricyclic benzodiazepine scaffold via catalyst-free three-component condensation using a broad range of aldehyde, o-phenylenediamine, and diketone sources. With either aldehyde or o-phenylenediamine conjugated with DNA tags, functionalized 1,5-benzodiazepine scaffolds were efficiently forged, expanding the chemical space of the diazepine-centered drug-like DEL.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China
| | - Jie Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
12
|
Montoya AL, Glavatskikh M, Halverson BJ, Yuen LH, Schüler H, Kireev D, Franzini RM. Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors. Eur J Med Chem 2023; 246:114980. [PMID: 36495630 PMCID: PMC9805525 DOI: 10.1016/j.ejmech.2022.114980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.
Collapse
Affiliation(s)
- Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Brayden J Halverson
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Lik Hang Yuen
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| | - Dmitri Kireev
- Department of Chemistry, 36 Schlundt Hall, University of Missouri, Columbia, MO, 65211, USA.
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA; Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
15
|
Gao Y, Sun Y, Zhao G, Zhang G, Li Y, Li Y. On-DNA Synthesis of Functionalized 4 H-Pyran Scaffolds for Focused DNA-Encoded Chemical Libraries. Org Lett 2022; 24:6664-6669. [PMID: 36053053 DOI: 10.1021/acs.orglett.2c02714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionalized 4H-pyran scaffold has aroused synthetic attention because it is widely found in many interesting pharmacologically relevant compounds. We here disclose its incorporation into DNA-encoded chemical libraries, combining this scaffold with the merits of scaffold architecture in drug design. Under the optimized DNA-compatible conditions, functionalized 4H-pyrans were efficiently formed with a broad substrate scope. Among the 4H-pyrans formed, the axial structure features rotational restriction, and the spirocyclic structure provides rigidity and three-dimensionality. These efforts open the door for the construction of DNA-encoded chemical libraries with more consideration for this structural architecture.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Eom S, Kwon T, Lee DY, Park CH, Kim HJ. Copper-Mediated Three-Component Reaction for the Synthesis of N-Acylsulfonamide on DNA. Org Lett 2022; 24:4881-4885. [PMID: 35775977 DOI: 10.1021/acs.orglett.2c01675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded library (DEL) technology is a new method for discovering hit compounds for target proteins in the pharmaceutical industry. The N-acylsulfonamide functional group has been reported to exhibit various pharmacological activities, and based on this, the demand for a method that allows its introduction into the DEL platform has increased. In this report, a procedure for synthesizing N-acylsulfonamide functional groups applicable to DEL construction was developed in the presence of a copper reagent and water as a nucleophile from simple alkynes or sulfonyl azides, which are widely commercially available. Furthermore, we prove that a new alternative procedure can be used to construct a DNA-encoded library.
Collapse
Affiliation(s)
- Solji Eom
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Taeyeon Kwon
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Da Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Chi Hoon Park
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Hyun Jin Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| |
Collapse
|
17
|
Sun J, Nie Q, Fang X, He Z, Zhang G, Li Y, Li Y. Vinyl azide as a synthon for DNA-compatible divergent transformations into N-heterocycles. Org Biomol Chem 2022; 20:5045-5049. [PMID: 35703385 DOI: 10.1039/d2ob00862a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inspired by diversity-oriented synthesis, we have developed a series of DNA-compatible transformations utilizing on-DNA vinyl azide as a synthon to forge divergent N-heterocyclic scaffolds. Polysubstituted imidazoles and isoquinolines were efficiently obtained with moderate-to-excellent conversions. Besides, the "one-pot" strategy to prepare in-house on-DNA vinyl azides afforded synthons readily. Results from substrate scope exploration and enzymatic ligation further demonstrate the feasibility of these N-heterocycle syntheses in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Zhiwei He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
18
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|