1
|
Gimnkhan A, Kancherla R, Muralirajan K, Rueping M. Selective Alkylarylation Difunctionalization of 1,3-Butadienes via Nickel/Photoredox Dual Catalysis. Org Lett 2025; 27:5509-5514. [PMID: 40388654 DOI: 10.1021/acs.orglett.5c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Photocatalytic multicomponent reactions are at the forefront of organic synthesis. In recent years, the dicarbofunctionalization of olefins has received significant attention, with nickel serving as a key transition metal catalyst under photochemical conditions. However, achieving regioselective 1,4-alkylarylation of dienes with alkyl and aryl bromides remains challenging. In this work, we present a Ni/photoredox dual catalysis approach for the regioselective alkylarylation of dienes, offering a mild reaction that eliminates the need for stochiometric metal reductants. Broad substrate scope and mechanistic investigations are presented that support the proposed reaction mechanism.
Collapse
Affiliation(s)
- Aidana Gimnkhan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Lux DM, Lee DJ, Sapkota RR, Giri R. Iron-Mediated Dialkylation of Alkenylarenes with Benzyl Bromides. J Org Chem 2024; 89:16292-16299. [PMID: 38572911 PMCID: PMC11450104 DOI: 10.1021/acs.joc.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We disclose a method for the dibenzylation of alkenylarenes with benzyl bromides using iron powder. This reaction generates branched alkyl scaffolds adorned with functionalized aryl rings through the formation of two new C(sp3)-C(sp3) bonds at the vicinal carbons of alkenes. This protocol tolerates electron-rich, electron-neutral, and electron-poor benzyl bromides and alkenylarenes. Mechanistic studies suggest the formation of benzylic radical intermediates as a result of single-electron transfer from the iron, which is intercepted by alkenylarenes.
Collapse
Affiliation(s)
- Daniel M Lux
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Liu Z, D’Amico F, Martin R. Regiodivergent Radical-Relay Alkene Dicarbofunctionalization. J Am Chem Soc 2024; 146:28624-28629. [PMID: 39388610 PMCID: PMC11503781 DOI: 10.1021/jacs.4c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Herein, we report a regiodivergent 1,n-dicarbofunctionalization of unactivated olefins enabled by a Ni-catalyzed radical relay that forges both C(sp3)-C(sp3) and C(sp2)-C(sp3) linkages, even at long-range. Initial studies support an intertwined scenario resulting from the merger of an atom-transfer radical addition (ATRA) and a chain-walking event, with site-selectivity being dictated by a judicious choice of the ligand backbone.
Collapse
Affiliation(s)
- Zhong Liu
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Francesco D’Amico
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- Department
of Biotechnology, Chemistry and Pharmacy
University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ruben Martin
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Huang S, Chen X, Xu Z, Zeng X, Xiong B, Qiu X. Radical alkylation and protonation induced anti-Markovnikov hydroalkylation of unactivated olefins via cobalt catalysis. Chem Commun (Camb) 2024; 60:9258-9261. [PMID: 39119642 DOI: 10.1039/d4cc03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Although strategies of olefin hydroalkylation continue to emerge rapidly, the precise control of the regio- or chemoselectivity and the expansion of the reaction range are still challenges. Herein, a straightforward route for cobalt-catalyzed anti-Markovnikov hydroalkylation of unactivated olefins with alkyl iodides has been achieved. The developed reaction is compatible with oxa-, aza-, cyclo- and a series of other functional groups as well as the frameworks of some bioactive compounds. Mechanism studies confirm that an alkyl radical is involved and cobalt-alkyl insertion followed by protonation with water are possible pathways in this reaction.
Collapse
Affiliation(s)
- Shanshan Huang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaoyang Chen
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Zhangwenyi Xu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaobao Zeng
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Biao Xiong
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaodong Qiu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| |
Collapse
|
6
|
Pearson JW, Hou TR, Golijanin J, Stewart PI, Choi ES, Gabbey AL, West MS, Rousseaux SAL. Ni-Catalyzed Reductive 1,2-Alkylarylation of Alkenes for the Synthesis of Spirocyclic γ-Lactams. Org Lett 2024; 26:5560-5565. [PMID: 38915176 DOI: 10.1021/acs.orglett.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An intermolecular nickel-catalyzed reductive 1,2-alkylarylation of acrylates with cyclopropylamine NHP esters and aryl iodides is reported. This operationally simple protocol provides direct access to 1-alkylcyclopropylamine scaffolds. The mild conditions are compatible with four-membered α-amino strained rings as well as five- and six-membered ring systems. The products undergo cyclization to access α-arylated spirocyclic γ-lactams─a motif present in several pharmaceuticals.
Collapse
Affiliation(s)
- James W Pearson
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Teh Ren Hou
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jelena Golijanin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Patricia I Stewart
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Eun Seo Choi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Michael S West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
8
|
Wang JZ, Lyon WL, MacMillan DWC. Alkene dialkylation by triple radical sorting. Nature 2024; 628:104-109. [PMID: 38350601 PMCID: PMC11474584 DOI: 10.1038/s41586-024-07165-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.
Collapse
Affiliation(s)
- Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - William L Lyon
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
9
|
Hou X, Liu H, Huang H. Iron-catalyzed fluoroalkylative alkylsulfonylation of alkenes via radical-anion relay. Nat Commun 2024; 15:1480. [PMID: 38368406 PMCID: PMC10874428 DOI: 10.1038/s41467-024-45867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Transition metal-catalyzed reductive difunctionalization of alkenes with alkyl halides is a powerful method for upgrading commodity chemicals into densely functionalized molecules. However, super stoichiometric amounts of metal reductant and the requirement of installing a directing group into alkenes to suppress the inherent β-H elimination bring great limitations to this type of reaction. We demonstrate herein that the difunctionalization of alkenes with two different alkyl halides is accessible via a radical-anion relay with Na2S2O4 as both reductant and sulfone-source. The Na2S2O4 together with the electron-shuttle catalyst is crucial to divert the mechanistic pathway toward the formation of alkyl sulfone anion instead of the previously reported alkylmetal intermediates. Mechanistic studies allow the identification of carbon-centered alkyl radical and sulfur-centered alkyl sulfone radical, which are in equilibrium via capture or extrusion of SO2 and could be converted to alkyl sulfone anion accelerated by iron electron-shuttle catalysis, leading to the observed high chemoselectivity.
Collapse
Affiliation(s)
- Xiaoya Hou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, P. R. China.
| |
Collapse
|
10
|
Yang H, Zhang Z, Cao P, Yang T. Nickel-Catalyzed Reductive Alkene Cross-Dialkylation with Unactivated Alkyl Electrophiles. Org Lett 2024; 26:1190-1195. [PMID: 38308849 DOI: 10.1021/acs.orglett.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
A Ni-catalyzed reductive dialkylation of 8-aminoquinoline-tethered aliphatic alkenes with two unactivated alkyl electrophiles is disclosed here. Key to the development of this transformation is the combination of primary alkyl (pseudo)halides and secondary alkyl iodides that produce products in a single regioselective manner. The reaction exhibits good functional group compatibility, and its synthetic utility was demonstrated by the concise synthesis of the precursors of biologically relevant molecules.
Collapse
Affiliation(s)
- Huixia Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Zeming Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Panting Cao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
11
|
Xu CH, Lv GF, Qin JH, Xu XH, Li JH. Visible-Light-Induced Photoredox 1,2-Dialkylation of Styrenes with α-Carbonyl Alkyl Bromides and Pyridin-1-ium Salts. J Org Chem 2024; 89:281-290. [PMID: 38109762 DOI: 10.1021/acs.joc.3c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A visible-light-driven photoredox dialkylation of styrenes with α-carbonyl alkyl bromides and pyridin-1-ium salts for the synthesis of polysubstituted 1,4-dihydropyridines is reported. This reaction enables the formation of two new C(sp3)-C(sp3) bonds in a single reaction step and provides a strategy that employs pyridin-1-ium salts as the functionalized alkylating reagents via dearomatization to directly trap the resulting alkyl radicals from radical addition of alkenes and then terminate the alkene dialkylation.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
12
|
Wang Q, Chen Y, Peng K, Li Y, Cheng L, Deng GJ. Three-Component Cross-Electrophile 1,4-Alkylarylation of 1,3-Enynes by Merging Nickel and Photoredox Catalysis. Org Lett 2023. [PMID: 38038400 DOI: 10.1021/acs.orglett.3c03677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A three-component 1,4-alkylarylation of 1,3-enynes with organic halides through the combination of nickel and photoredox catalysis has been established, providing a novel and modular approach for the assembly of tetrasubstituted allenes. This reductive cascade cross-electrophile reaction obviates the need for air-sensitive organometallic reagents and stoichiometric metallic reductants. A diverse range of functional groups are very compatible under mild reaction conditions and give satisfactory yields. Moreover, a reasonable mechanism is presented according to a series of control experiments.
Collapse
Affiliation(s)
- Quanyuan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Keyi Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yue Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lilei Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
13
|
Long T, Zeng YL, Dong ZH, Li S, Zhan J, Zeng SM, Qiu JL, Chu WD, Liu QZ. Nickel-Catalyzed Three-Component Alkylarylation of Alkenyl N-Heteroarenes. Org Lett 2023; 25:8344-8349. [PMID: 37962415 DOI: 10.1021/acs.orglett.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A nickel-catalyzed three-component alkylarylation of alkenyl N-heteroarenes with α-bromocarboxylates and aryl boronic acids is reported. The protocol provides a new method to access a variety of N-heteroarene substituted diarylalkanes in moderate to good yields. It features mild reaction conditions, cheap nickel catalyst, readily available substrates, and broad substrate scope.
Collapse
Affiliation(s)
- Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Ya-Li Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Sheng-Min Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jia-Li Qiu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| |
Collapse
|
14
|
Lu L, Sui J, Huang S, Xiong B, Zeng X, Qiu X, Zhang Y. Nickel-Catalyzed 8-Aminoquinoline Directed Reductive Dialkylcyclization/Homodialkylation of Unactivated Alkenes. Org Lett 2023; 25:7800-7804. [PMID: 37874767 DOI: 10.1021/acs.orglett.3c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Chemo and regioselective dialkylation of alkene is an efficient protocol for constructing useful chemicals, but challenges remain in the unrestricted application of alkylating reagents. Alkyl bromide belongs to the easy-to-access and operable alkyl electrophiles that can be used in reductive coupling with alkenes. Here, we reported convenient strategies for dialkylcyclization and homodialkylation of unactivated β,γ- and γ,δ-unsaturated alkenyl amides with 1,3-dibromoalkanes or primary alkyl bromides under nickel-catalyzed reductive conditions that exhibited high regioselectivity and functional-group tolerance.
Collapse
Affiliation(s)
- Lingyi Lu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jing Sui
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Shanshan Huang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Biao Xiong
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaobao Zeng
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaodong Qiu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yanan Zhang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
15
|
Lu L, Wang Y, Zhang W, Zhang W, See KA, Lin S. Three-Component Cross-Electrophile Coupling: Regioselective Electrochemical Dialkylation of Alkenes. J Am Chem Soc 2023; 145:22298-22304. [PMID: 37801465 PMCID: PMC10625357 DOI: 10.1021/jacs.3c06794] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cross-electrophile dialkylation of alkenes enables the formation of two C(sp3)-C(sp3) bonds from readily available starting materials in a single transformation, thereby providing a modular and expedient approach to building structural complexity in organic synthesis. Herein, we exploit the disparate electronic and steric properties of alkyl halides with varying degrees of substitution to accomplish their selective activation and addition to alkenes under electrochemical conditions. This method enables regioselective dialkylation of alkenes without the use of a transition-metal catalyst and provides access to a diverse range of synthetically useful compounds.
Collapse
Affiliation(s)
- Lingxiang Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly A. See
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Lin J, Chen K, Wang J, Guo J, Dai S, Hu Y, Li J. Salt-stabilized alkylzinc pivalates: versatile reagents for cobalt-catalyzed selective 1,2-dialkylation. Chem Sci 2023; 14:8672-8680. [PMID: 37592988 PMCID: PMC10430519 DOI: 10.1039/d3sc02345a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The construction of Csp3-Csp3 bonds through Negishi-type reactions using alkylzinc reagents as the pronucleophiles is of great importance for the synthesis of pharmaceuticals and agrochemicals. However, the use of air and moisture sensitive solutions of conventional alkylzinc halides, which show unsatisfying reactivity and limitation of generality in twofold Csp3-Csp3 cross-couplings, still represents drawbacks. We herein report the first preparation of solid and salt-stabilized alkylzinc pivalates by OPiv-coordination, which exhibit enhanced stability and a distinct advantage of reacting well in cobalt-catalyzed difluoroalkylation-alkylation of dienoates, thus achieving the modular and site-selective installation of CF2- and Csp3-groups across double bonds in a stereoretentive manifold. This reaction proceeds under simple and mild conditions and features broad substrate scope and functional group compatibility. Kinetic experiments highlight that OPiv-tuning on the alkylzinc pivalates is the key for improving their reactivity in twofold Csp3-Csp3 cross-couplings. Furthermore, facile modifications of bioactive molecules and fluorinated products demonstrate the synthetical utility of our salt-stabilized alkylzinc reagents and cobalt-catalyzed alkyldifluoroalkylation protocol.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jiawei Guo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Siheng Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Lux DM, Aryal V, Niroula D, Giri R. Nickel-Catalyzed Regioselective Intermolecular Dialkylation of Alkenylarenes: Generation of Two Vicinal C(sp 3 )-C(sp 3 ) Bonds Across Alkenes. Angew Chem Int Ed Engl 2023; 62:e202305522. [PMID: 37316459 PMCID: PMC10528944 DOI: 10.1002/anie.202305522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023]
Abstract
We disclose a Ni-catalyzed regioselective dialkylation reaction of alkenylarenes with α-halocarbonyls and alkylzinc reagents. The reaction produces γ-arylated alkanecarbonyl compounds with the generation of two new C(sp3 )-C(sp3 ) bonds at the vicinal carbons of alkenes. This reaction is effective for the use of primary, secondary and tertiary α-halocarboxylic esters, amides and ketones in conjunction with primary and secondary alkylzinc reagents as the sources of two C(sp3 ) carbons for the dialkylation of terminal and cyclic internal alkenes.
Collapse
Affiliation(s)
| | | | | | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Wang Y, Lin C, Zhang Z, Shen L, Zou B. Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air. Org Lett 2023; 25:2172-2177. [PMID: 36946921 DOI: 10.1021/acs.orglett.3c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An expeditious and novel nickel-catalyzed selective arylhydroxylation of unactivated alkenes with arylboronic acids was developed. This protocol is compatible with β,γ- and γ,δ-alkene amides, including traditionally challenging internal alkenes, to provide important β-arylethylalcohol scaffolds. The free hydroxyl group in the final product could be smoothly further transformed into other functional groups. Control experiments indicated that the oxygen atom of the hydroxyl group in the product is derived from the oxygen in the air.
Collapse
Affiliation(s)
- Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zongxu Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Boya Zou
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
19
|
Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
20
|
Zhao H, Yuan W. Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis. Chem Sci 2023; 14:1485-1490. [PMID: 36794187 PMCID: PMC9906790 DOI: 10.1039/d2sc06303d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
A three-component reductive cross-coupling of aryl halides, aldehydes, and alkenes by nickel/photoredox dual catalysis is disclosed. The key to success for this tandem transformation is to identify α-silylamine as a unique organic reductant, which releases silylium ions instead of protons to prevent unwanted protonation processes, and meanwhile serves as Lewis acid to activate aldehydes in situ. This dual catalytic protocol completes a traditional conjugate addition/aldol sequence that eliminates the requirement of organometallic reagents and metal-based reductants, thus providing a mild synthetic route to highly valuable β-hydroxyl carbonyl compounds with contiguous 1,2-stereocenters.
Collapse
Affiliation(s)
- Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 PR China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 PR China .,Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 PR China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 PR China
| |
Collapse
|