1
|
Yuan WN, Jin LX, Luo SJ, Yuan MW, Cai ZN, Qin HB. Concise total synthesis of (±)-applanatumol Y. Org Biomol Chem 2025; 23:814-816. [PMID: 39661008 DOI: 10.1039/d4ob01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Total synthesis of (±)-applanatumol Y was achieved in 5 steps, featuring a cascade annulation including Michael addition, aldol condensation, and oxy-Michael addition reactions, all promoted by DBU. This approach offers a streamlined and cost-effective route for constructing complex tricyclic frameworks under mild and metal-free conditions.
Collapse
Affiliation(s)
- Wan-Ning Yuan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ling-Xin Jin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Song-Juan Luo
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ming-Wei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, China
| | - Zhao-Nan Cai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Hong-Bo Qin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| |
Collapse
|
2
|
Nie Q, Sun C, Liu S, Li Q, Zotova M, Zhu T, Gao X. Enzymatic Ring Contraction for the Biosynthesis of Sulfur-Containing Cyclopentachromone. J Am Chem Soc 2025; 147:548-556. [PMID: 39680614 DOI: 10.1021/jacs.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cyclopentachromone, distinguished by its 6/6/5 heterotricyclic ring structure, is a key building block in many bioactive natural products, yet its enzymatic origin remains unclear. We identified a new class of cyclopentachromone-containing compounds, termed isochromosulfines, characterized by unique C-S bonds. A distinct FAD-dependent monooxygenase, IscL, was identified to catalyze the formation of the 6/6/5 cyclopentadiene intermediate, 2S-remisporine A, from a 6/6/6 xanthone precursor via benzene ring contraction. The high reactivity of 2S-remisporine A further promotes a spontaneous thiol-Michael addition reaction with thiol-containing compounds, forming the C-S bond in isochromosulfines. Additionally, we demonstrate that IscL homologues mediate a bifurcated pathway of benzene ring modification in the xanthone intermediate, leading to either ring contraction or cleavage, which is determined by a critical residue at position 230 to be phenylalanine or tyrosine. Our findings highlight the pivotal role of IscL in forming the 6/6/5 cyclopentachromone scaffold and offer deep insights into its catalytic mechanism. Our work lays the foundation for genome mining of cyclopentachromone-containing compounds and shows the potential application of IscL in biocatalysis.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Qiang Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Maria Zotova
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
3
|
Müller N, Kováč O, Rode A, Atzl D, Magauer T. Total Synthesis of Ganoapplanin Enabled by a Radical Addition/Aldol Reaction Cascade. J Am Chem Soc 2024; 146:22937-22942. [PMID: 39110664 PMCID: PMC7616391 DOI: 10.1021/jacs.4c08291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
The total synthesis of the Ganoderma meroterpenoid ganoapplanin, an inhibitor of T-type voltage-gated calcium channels, is reported. Our synthetic approach is based on the convergent coupling of a readily available aromatic polyketide scaffold with a bicyclic terpenoid fragment. The three contiguous stereocenters of the terpenoid fragment, two of which are quaternary, were constructed by a diastereoselective, titanium-mediated iodolactonization. For the fusion of the two fragments and to simultaneously install the crucial biaryl bond, we devised a highly effective two-component coupling strategy. This event involves an intramolecular 6-exo-trig radical addition of a quinone monoacetal followed by an intermolecular aldol reaction. A strategic late-stage oxidation sequence allowed the selective installation of the remaining oxygen functionalities and the introduction of the characteristic spiro bisacetal structure of ganoapplanin.
Collapse
Affiliation(s)
- Nicolas Müller
- Department
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ondřej Kováč
- Department
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
- Department
of Organic Chemistry, Palacký University
Olomouc, 77900 Olomouc, Czech
Republic
| | - Alexander Rode
- Department
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Atzl
- Department
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Magauer
- Department
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Cheng M, Zhang L, Wang J, Sun X, Qi Y, Chen L, Han C. The Artist's Conk Medicinal Mushroom Ganoderma applanatum (Agaricomycetes): Mycological, Mycochemical, and Pharmacological Properties: A Review. Int J Med Mushrooms 2024; 26:13-66. [PMID: 38884263 DOI: 10.1615/intjmedmushrooms.2024053900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.
Collapse
Affiliation(s)
- Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of TCM, Jinan 250000, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
7
|
Kowalska E, Dyguda M, Artelska A, Albrecht A. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[ b]chromenocarbonitrile Derivatives. J Org Chem 2023; 88:16589-16597. [PMID: 38037694 PMCID: PMC10696553 DOI: 10.1021/acs.joc.3c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.
Collapse
Affiliation(s)
- Ewelina Kowalska
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Mateusz Dyguda
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Angelika Artelska
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Anna Albrecht
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
8
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|