1
|
Xiao R, Lang Y, Cheng Z, Zhou L, Cao ZY, Yuan Z, Wang Y. Decatungstate-Catalyzed Hydrosilylation of α-Trifluoromethylalkenes for Construction of α-Trifluoromethyl-β-silanes. Org Lett 2025; 27:4439-4444. [PMID: 40247816 DOI: 10.1021/acs.orglett.5c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The hydrosilylation of alkenes is a pivotal transformation for the synthesis of organosilanes; however, the hydrosilylation of fluorine-containing alkenes is limited due to the facile β-fluoride elimination. Herein, by employing the direct hydrogen atom transfer (HAT) catalyst, tetrabutylammonium decatungstate (TBADT), and using disulfide as a co-catalyst, we have successfully developed a mild photocatalytic hydrosilylation of α-trifluoromethylalkenes for the synthesis of α-trifluoromethyl-β-silanes. Our method features mild conditions, good regioselectivity, and compatibility. The β-fluoride elimination was fully inhibited. A radical mechanism was proposed based on the preliminary results.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yutong Lang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Ziqiang Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
2
|
Zhang H, Yang D, Mei YT, Guo ZY, Hou QY, Zheng YX, Jing LH, Cheng DJ, Shi MS. Visible light-mediated decarboxylative allylic alkylation of Morita-Baylis-Hillman acetates with unactivated aliphatic acids. Org Biomol Chem 2025; 23:3102-3106. [PMID: 40028892 DOI: 10.1039/d4ob02036g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Carboxylic acids are bench-stable and readily available chemical feedstocks that function as optimal and fundamental synthetic platforms for the construction of C(sp3)-C(sp3) bonds through decarboxylation processes. Herein, a visible light-induced and metal-free strategy for the direct decarboxylative allylic alkylation of Morita-Baylis-Hillman acetates with aliphatic acids was developed. The model delivered a series of trisubstituted alkenes in good to excellent yields. This protocol features broad substrate scope, and mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Zi-Yi Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Qiu-Yao Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Xuan Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - De-Jun Cheng
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan. College of Chemical Engineering Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China.
| |
Collapse
|
3
|
Yang D, Mei YT, Guo ZY, Hou QY, Zhang H, Zheng YX, Jing LH, Cheng DJ, Shi MS. Decarboxylative Alkylation of Morita-Baylis-Hillman Acetates with Aliphatic Acids via Photochemical Iron-Mediated Ligand-to-Metal Charge Transfer. J Org Chem 2025; 90:3665-3672. [PMID: 40019947 DOI: 10.1021/acs.joc.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Carboxylic acids are bench-stable and readily available chemical feedstocks that function as optimal and fundamental synthetic platforms for the construction of C(sp3)-C(sp3) bonds via decarboxylation processes. We present a novel and practical protocol for the decarboxylative alkylation of Morita-Baylis-Hillman acetates with various carboxylic acids via a photoinduced iron-mediated ligand-to-metal charge transfer (LMCT) process under redox-neutral conditions. This method exhibits remarkable tolerance to a wide array of carboxylic acids, including primary, secondary, and tertiary carboxylic acids, obviating the requirement for preactivated radical precursors. The preliminary mechanistic analyses indicate that a radical pathway is involved in this catalytic transformation.
Collapse
Affiliation(s)
- Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zi-Yi Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qiu-Yao Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yu-Xuan Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - De-Jun Cheng
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemical Engineering Sichuan University of Science & Engineering, Zigong 643000, China
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Xie X, Liu HW, Zhu T, Zhang JJ, Hu MY, Chen Z. Visible-Light-Induced Synergistic W/Cr Catalyzed gem-Difluoroallylation of Unactivated Alkanes. Org Lett 2025; 27:2016-2021. [PMID: 39967465 DOI: 10.1021/acs.orglett.5c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Currently, the scope of the Nozaki-Hiyama-Kishi (NHK) reaction is limited to aldehydes and ketones to construct alcohol derivatives. Herein, we have described a visible-light-induced synergistic W/Cr(III)-catalyzed NHK-type gem-difluoroallylation reaction of unactivated cyclic and linear alkanes. The reaction merits feedstock materials, mild reaction conditions, and a wide functionality tolerance. Mechanistic studies imply the favorable reduction of CrCl3 to CrCl2 by reduced decatungstate W10O325-, thus closing the catalytic cycle.
Collapse
Affiliation(s)
- Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hua-Wei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meng-Yang Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Roy S, Besset T. New Opportunities to Access Fluorinated Molecules Using Organophotoredox Catalysis via C(sp 3)-F Bond Cleavage. JACS AU 2025; 5:466-485. [PMID: 40017776 PMCID: PMC11862972 DOI: 10.1021/jacsau.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Fluorinated molecules are of paramount importance because of their unique properties. As a result, the search for innovative approaches to the synthesis of this class of compounds has been relentless over the years. Among these, the combination of photocatalysis and organofluorine chemistry turned out to be an effective partnership to access unattainable fluorinated molecules. This Perspective provides an overview of the recent advances in synthesizing fluorinated molecules via an organophotoredox-catalyzed defluorination process from trifluoromethylated compounds. It encompasses the preparation of difluoromethylated (hetero)arenes, amides, and esters as well as gem-difluoroalkene derivatives using C(sp3)-F bond activation or β-fragmentation. This Perspective will highlight remaining challenges and discuss future research opportunities.
Collapse
Affiliation(s)
- Sourav Roy
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| | - Tatiana Besset
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| |
Collapse
|
6
|
Mao J, Chen M, Zhong Y, Song RJ. Recent developments in difunctionalization of unsaturated hydrocarbons with organosilicon reagents. Org Biomol Chem 2024; 23:59-77. [PMID: 39535024 DOI: 10.1039/d4ob01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Organosilicon compounds have attracted considerable attention because of their special biological activities. Direct difunctionalization of unsaturated hydrocarbons with organosilicon reagents for the efficient construction of synthetically valuable silicon-functionalized compounds are featured with a high step and atom economy, which could form carbon-silicon/carbon-carbon bonds or carbon-silicon/carbon-hetero bonds in one step. This review summarizes the recent advances on this topic based on different unsaturated hydrocarbons along with typical examples and mechanisms.
Collapse
Affiliation(s)
- Jiawei Mao
- College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China.
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Zhang Y, Wang T, Liu YY, Zhang ZB, Han P, Jing L. Organic Photoredox-Catalyzed Hydrosilylation of Vinylboronic Esters for the Synthesis of Geminal and Vicinal Borosilanes. J Org Chem 2024; 89:16463-16472. [PMID: 39446172 DOI: 10.1021/acs.joc.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Geminal and vicinal borosilanes have unique applications in functional materials and synthetic transformations. Herein, a convenient method for the synthesis of geminal and vicinal borosilanes is developed via photoredox metal-free hydrosilylation of vinylboronic esters. This strategy features the advantages of high atom economy, environmental friendliness, and excellent functional group compatibility. The mechanism studies reveal that the catalytic reaction goes through photoredox HAT catalysis and a radical addition pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yuan-Yuan Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
8
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
9
|
Bajya KR, Maurya SK, Selvakumar S. Organophotocatalytic Regioselective Silylation/Germylation and Cascade Cyclization of N-Alkenyl α-CF 3 Acrylamides: Access to Densely Functionalized 4-Pyrrolin-2-ones. Org Lett 2024; 26:9269-9275. [PMID: 39432672 DOI: 10.1021/acs.orglett.4c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We report an organophotoredox-catalyzed silylation/germylation cascade cyclization of N-alkenyl α-CF3 acrylamides under mild conditions. N-Aminopyridinium salts act as hydrogen atom transfer reagents under photoredox catalysis in the generation of silyl and germyl radicals. An array of silyl- and germyl-substituted 3-CF3-4-pyrrolin-2-one derivatives were constructed in a shorter reaction time with low catalyst loading in good to excellent yields at room temperature. Importantly, this protocol is amenable to the late-stage diversification of bioactive molecules, as well as to large-scale synthesis.
Collapse
Affiliation(s)
- Kalu Ram Bajya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Shivam Kumar Maurya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
10
|
Yuan BR, He XK, Cheng Y, Xiao WJ. Photoinduced Hydrosilylation of Fluorinated Alkenes. Org Lett 2024; 26:8610-8614. [PMID: 39353052 DOI: 10.1021/acs.orglett.4c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A visible-light-induced synthesis protocol for silylmonofluoroalkanes is described. The silylation of alkenyl fluorides using (trimethylsilyl)silanes as organosilicon reagents proceeds well under mild conditions via a sequential photoinduced single-electron transfer and protonation process. The protocol shows a broad substrate scope, transition-metal-free conditions, and high functional group tolerance. A wide variety of silylmonofluoroalkanes were obtained in generally good yields (up to 82%).
Collapse
Affiliation(s)
- Bao-Ru Yuan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang-Kui He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| |
Collapse
|
11
|
Zhou YX, Liu FQ, Wang GQ, Yang D, Han P, Jing LH. Photoredox-catalyzed C(sp 2)-H trifluoromethylation of 3-methylene-isoindolin-1-ones under metal-free conditions. Org Biomol Chem 2024; 22:6928-6932. [PMID: 39119751 DOI: 10.1039/d4ob01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A facile synthetic method for direct C(sp2)-H bond trifluoromethylation of 3-methylene-isoindolin-1-ones under visible-light-induced metal-free conditions is presented. This protocol features mild reaction conditions, broad substrate scope and excellent functional group tolerance, resulting in a range of structurally diverse trifluoromethylated products in good to excellent yields.
Collapse
Affiliation(s)
- Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Feng-Qian Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
12
|
Wang K, Cheng B, König B, Zhang D, Xu B, Wang S, Zhang G. Photocatalyzed 1,3-Bromodifluoroallylation of [1.1.1]Propellane with α-Trifluoromethylalkenes and KBr Salts. Org Lett 2024; 26:6889-6893. [PMID: 39106520 DOI: 10.1021/acs.orglett.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Herein we unveil a visible-light-driven transition-metal-free 1,3-bromodifluoroallylation of [1.1.1]propellane. This reactivity is harnessed through organophotocatalysis, providing practical synthetic pathways to 1-brominated-3-gem-difluoroallylic bicyclo[1.1.1]pentane derivatives, particularly derived from readily available α-trifluoromethylalkenes and inexpensive KBr salts utilized as precursors for bromine radicals. Mechanistic investigations reveal that bromide anions quench the excited state of the photocatalyst, leading to the formation of bromine radicals, which react in a strain-release radical addition process rather than hydrogen atom abstraction with [1.1.1]propellane.
Collapse
Affiliation(s)
- Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| |
Collapse
|
13
|
Mei YT, Zhang H, Jiang Y, Gu YJ, Deng JL, Yang D, Jing LH, Shi MS. Modular access to diarylmethyl sulfonamides via visible light-promoted cross-coupling reactions. Chem Commun (Camb) 2024; 60:8589-8592. [PMID: 39045678 DOI: 10.1039/d4cc02571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We report a novel and efficient method for the preparation of diarylmethyl sulfonamide derivatives through visible-light-induced sulfamoylation of para-quinone methides with sulfamoyl chlorides under mild, metal-free conditions. This protocol demonstrates excellent tolerance toward a wide range of functional groups, affording the corresponding products in moderate to high yields. Preliminary mechanism studies revealed that the excited photocatalyst rhodamine 6G* was mainly quenched by para-quinone methides and the generated diarylmethyl radical intermediates then underwent radical-radical cross-coupling with sulfamoyl radicals to yield the diarylmethyl sulfonamides.
Collapse
Affiliation(s)
- Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Jia Gu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jiang-Lai Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China.
| |
Collapse
|
14
|
Zhang D, Wang L, Zhang G. Organophotocatalyzed Cross Coupling of C- and Si-Radical to Access Dibenzylic Silanes from para-Quinone Methides and Silanecarboxylic Acids. J Org Chem 2024; 89:10379-10383. [PMID: 38923888 DOI: 10.1021/acs.joc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein we present a catalytic cross-coupling strategy between C-radicals and Si-radicals, enabling the efficient, gentle, and versatile synthesis of dibenzylic silanes from para-quinone methides and silanecarboxylic acids as the stable silyl radical precursors. The reaction is facilitated by an inexpensive organophotocatalyst and exhibits broad compatibility with various electron-donating and electron-withdrawing functional groups. Notably, mechanistic investigations suggest the involvement of dibenzylic and silyl radicals, underscoring a novel radical coupling mechanism that introduces a fresh perspective on C-Si bond formation.
Collapse
Affiliation(s)
- Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006 Liuzhou, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| |
Collapse
|
15
|
Yang P, Yu H, Zhai R, Zhou JS, Tang B. Nickel-catalyzed hydrodefluorination/deuterodefluorination of CF 3-alkenes with formic acid. Chem Commun (Camb) 2024; 60:6548-6551. [PMID: 38842110 DOI: 10.1039/d4cc00918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The synthesis of deuterated gem-difluoroalkenes via selective deuterodefluorination of β-CF3-cinnamates using a nickel catalyst has been reported for the first time. Commercially available deuterated formic acid is a cheap and convenient deuterium source. The nickel-catalyst showed high selectivity for monodefluorination and avoided competitive reactions such as multiple defluorination or hydrogenation.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Haiping Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Runze Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
16
|
Wang T, Chen L, Liu YY, Zhang ZB, Han P, Jing LH. Silylation and (Hetero)aryl/alkenylation of Unactivated Alkenes via Radical-Mediated Distal 1,4-Migration with Hydrosilanes under Organophotocatalysis. Org Lett 2024; 26:4526-4531. [PMID: 38761124 DOI: 10.1021/acs.orglett.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
We report a novel organic photoredox catalysis to achieve unprecedented γ-(hetero)aryl/alkenyl-δ-silyl aliphatic amines via silyl-mediated distal (hetero)aryl/alkenyl migration of aromatic/alkenyl amines bearing unactivated alkenes with hydrosilanes. This protocol features mild and metal-free reaction conditions, high atom economy, excellent selectivity, and functional group compatibility. Mechanistic studies suggest that silylation and (hetero)aryl/alkenylation involve photoredox hydrogen atom transfer catalysis and subsequent 1,4-migration of a remote (hetero)aryl/alkenyl group from nitrogen to carbon.
Collapse
Affiliation(s)
- Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Yuan-Yuan Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| |
Collapse
|
17
|
Wang GQ, Zhang Y, Zhou YX, Yang D, Han P, Jing LH, Tang K. Photoredox Synthesis of Silicon-Containing Isoindolin-1-ones and Deuterated Analogues Through Hydrosilylation and Deuterium-silylation. J Org Chem 2024. [PMID: 38728220 DOI: 10.1021/acs.joc.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kai Tang
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
18
|
Chen B, Chen Q, Liu Y, Chen J, Zhou X, Wang H, Yan Q, Wang W, Cai Z, Chen FE. Visible-Light-Induced Defluorinative α-C(sp 3)-H Alkylation for the Synthesis of gem-Difluoroallylated α-Trifluoromethylamines. Org Lett 2023; 25:9124-9129. [PMID: 37976410 DOI: 10.1021/acs.orglett.3c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, we describe a novel and efficient photoredox catalytic Cα radical addition/defluoroalkylation coupling reaction between α-trifluoromethyl alkenes and N-trifluoroethyl hydroxylamine. A series of gem-difluoroallylated α-trifluoromethylamines were synthesized by the Cα radical addition enabled by a 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Notably, this protocol is distinguished by its mild conditions, easy operation, and excellent functional group tolerability.
Collapse
Affiliation(s)
- Bingran Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jinxiu Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xi Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Zeyu Cai
- Hubei Duorui Pharmaceutical Co., Ltd. Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
19
|
Wang GQ, Wang T, Zhang Y, Zhou YX, Yang D, Han P, Jing LH. Photoredox Metal-Free Synthesis of Unnatural β-Silyl-α-Amino Acids via Hydrosilylation. Chem Asian J 2023:e202300805. [PMID: 37906443 DOI: 10.1002/asia.202300805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
An efficient, practical and metal-free methodology for the synthesis of β-silyl-α-amino acid motifs via photoredox and hydrogen atom transfer (HAT) process is described. This protocol enables the direct hydrosilylation of dehydroalanine derivatives and tolerates a wide array of functional groups and synthetic handles, leading to valuable β-silyl-α-amino acids with moderate to good yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| |
Collapse
|
20
|
Zhang G, Wang K, Zhang D, Zhang C, Tan W, Chen Z, Chen F. Decarboxylative Allylation of Silanecarboxylic Acids Enabled by Organophotocatalysis. Org Lett 2023; 25:7406-7411. [PMID: 37782755 DOI: 10.1021/acs.orglett.3c02907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein we present a visible-light-facilitated transition-metal-free allylic silylation reaction under mild conditions. This protocol is enabled by an inexpensive organophotocatalyst and provides efficient and concise synthetic routes to substituted allylsilanes, particularly from readily available allyl sulfones and stable silanecarboxylic acids as silyl radical precursors. Further investigations reveal that this strategy is also generally compatible with vinyl sulfones to access vinylsilanes. The silver catalytic system opens up an alternative entry to realize the decarboxylative allylation of silanecarboxylic acids.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Zhanzhan Chen
- Medical College, Yangzhou University, Jiangyang Road 136, Yangzhou 225009, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| |
Collapse
|
21
|
Li X, Zhang F, Zhong Y, Li N, Xu J, Fan B. Photocatalytic Alkynylation of Hydrosilanes via Hydrogen Atom Transfer. J Org Chem 2023; 88:11675-11682. [PMID: 37523687 DOI: 10.1021/acs.joc.3c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Alkynylsilanes are significant structural units frequently used in synthetic chemistry, medicinal chemistry, functional materials, and life sciences. Herein, we report a method for using a hydrogen atom transfer (HAT) strategy in combination with visible-light-driven photocatalysis to achieve a direct coupling reaction between benzene sulfonyl acetylene and tertiary silanes, and a diverse alkynylation of hydrosilanes in the presence of reactive groups was achieved with this strategy. It is important to note that dihydroalkyl/aryl silanes are also suitable for the protocol of HAT photocatalytic of 4CzIPN and quinuclidine.
Collapse
Affiliation(s)
- Xinhan Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| | - Fuqin Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| | - Yao Zhong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| | - Na Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| | - Jianbin Xu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| | - Baomin Fan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, People's Republic of China
| |
Collapse
|
22
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
23
|
Lu WH, Yang D, Wang GQ, Wang T, Zhou YX, Jing LH. Photocatalytic synthesis of alkyl-alkyl sulfones via direct C(sp 3)-H bond functionalization. Org Biomol Chem 2023; 21:2822-2827. [PMID: 36928523 DOI: 10.1039/d3ob00276d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We report a highly efficient one-pot, three-component strategy for the construction of alkyl-alkyl sulfones through a photoinduced TBADT-catalyzed C(sp3)-H sulfonylation of unactivated hydrocarbon compounds. A wide range of commercially available hydrocarbon compounds and bioactive molecules can be successfully applied to the catalytic system, affording the corresponding alkyl-alkyl sulfones in good to excellent yields (>50 examples, up to 87% yield).
Collapse
Affiliation(s)
- Wen-Hua Lu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
24
|
Zhang G, Tian Y, Zhang C, Li X, Chen F. Decarboxylative C-H silylation of N-heteroarenes with silanecarboxylic acids. Chem Commun (Camb) 2023; 59:2449-2452. [PMID: 36752089 DOI: 10.1039/d2cc06380h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Established decarboxylative Minisci reactions are limited to aliphatic carboxylic acids, as their analogs, silanecarboxylic acids, have been rarely investigated. Herein, we present a new decarboxylative Minisci-type reaction of N-heteroarenes with silanecarboxylic acids under photo- or silver-mediated conditions. This C-H silylation strategy provides efficient access to diverse N-heteroarylsilanes in moderate to excellent yields with high regioselectivity, among which Ag-catalysed decarboxylation of silanecarboxylic acids furnishes an unprecedented method for silyl radical generation.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
25
|
Wan Q, Hou ZW, Zhao XR, Xie X, Wang L. Organoelectrophotocatalytic C-H Silylation of Heteroarenes. Org Lett 2023; 25:1008-1013. [PMID: 36735345 DOI: 10.1021/acs.orglett.3c00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An organoelectrophotocatalytic approach for the C-H silylation of heteroarenes through dehydrogenation cross-coupling with H2 evolution has been developed. The organoelectrophotocatalytic strategy is carried out under a simple and efficient monocatalytic system by employing 9,10-phenanthrenequinone both as an organocatalyst and as a hydrogen atom transfer (HAT) reagent, which avoids the need for an external HAT reagent, an oxidant, or a metal reagent. A variety of heteroarenes can be compatible in satisfactory yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xin-Ru Zhao
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xiaoyu Xie
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
26
|
Yang C, Chen J, Li X, Meng L, Wang K, Sun W, Fan B. Difluoroallylation of Silanes under Photoirradiation. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Photoredox/Nickel Cooperatively Catalyzed Radical Allylic Silylation of Allyl Acetates – Scope and Mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Aelterman M, Biremond T, Jubault P, Poisson T. Electrochemical Synthesis of gem-Difluoro- and γ-Fluoro-Allyl Boronates and Silanes. Chemistry 2022; 28:e202202194. [PMID: 36067044 PMCID: PMC9828158 DOI: 10.1002/chem.202202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/12/2023]
Abstract
The electrochemical synthesis of fluorinated allyl silanes and boronates was disclosed. The addition of electrogenerated boryl or silyl radicals onto many α-trifluoromethyl or α-difluoromethylstyrenes in an undivided cell allowed the formation of a large panel of synthetically useful gem-difluoro and γ-fluoroallyl boronates and silanes (64 examples, from 31 % to 95 % yield). In addition, a scale up of the reactions under continuous flow was showcased using an electrochemical reactor with promising volumetric productivity (688 g.L-1 .h-1 and 496 g.L-1 .h-1 ). Moreover, the synthetic utility of these building blocks was highlighted through versatile transformations. Finally, plausible reaction mechanisms were suggested to explain the formation of the products.
Collapse
Affiliation(s)
- Maude Aelterman
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tony Biremond
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Thomas Poisson
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
- Institut Universitaire de France1 rue Descartes75231ParisFrance
| |
Collapse
|
29
|
Qian BC, Zhu CZ, Shen GB. The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS OMEGA 2022; 7:39531-39561. [PMID: 36385900 PMCID: PMC9648049 DOI: 10.1021/acsomega.2c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.
Collapse
Affiliation(s)
- Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Chao-Zhe Zhu
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
30
|
Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes. Chem Commun (Camb) 2022; 58:8380-8383. [PMID: 35792097 DOI: 10.1039/d2cc02846h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A photo-induced transition-metal-free regioselective hydroborylation of α,β-unsaturated carbonyl compounds is developed. The PhSSPh reagent was employed as the photocatalyst, and NHC-BH3 was used as the boron source. This transformation shows a broad substrate scope and provides a wide range of α-borylcarbonyl molecules in good to excellent yields.
Collapse
Affiliation(s)
- Xinghua Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yujing Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhaoliang Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yihan Zheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
31
|
Yang X, Gao H, Yan J, Shi L. Recent Progress in Radical-Mediated Si—H Functionalization of Silanes: An Effective Strategy for the Synthesis of Organosilanes Containing C—Si Bond. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|