1
|
Peytam F, Foroumadi P, Gulcan HO, Norouzbahari M, Mojtabavi S, Faramarzi MA, Ghasemi F, Torabi M, Bameri B, Barazandeh Tehrani M, Firoozpour L, Foroumadi A. Design, synthesis, and evaluation of triazolo[1,5-a]pyridines as novel and potent α‑glucosidase inhibitors. Sci Rep 2025; 15:17813. [PMID: 40404778 PMCID: PMC12098659 DOI: 10.1038/s41598-025-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
α-Glucosidase is a key enzyme responsible for controlling the blood glucose, making a pivotal target in the treatment of type 2 diabetes mellitus. Present work introduces1,2,4triazolo[1,5-a]pyridine as a novel, potent scaffold for α-glucosidase inhibition. A diverse scope of targeted compounds was prepared through an efficient, straightforward synthetic protocol. A series of compounds (15a-15v) were synthesized using a simple and efficient protocol, all showing notable inhibitory activity. Among them, compound 15j exhibited the best inhibition potency (IC₅₀ = 6.60 ± 0.09 µM), acting as a competitive and selective α-glucosidase inhibitor with no effect on α-amylase. Moreover, comprehensive computational studies were performed to validate the in vitro results and provide insight into compounds' binding interactions within the α-glucosidase's active site. The machine learning model, trained with the Estate fingerprint, achieved an AUC score of 0.65, demonstrating its utility in predicting α-glucosidase inhibition. Random Forest was identified as the most suitable model, and the dataset with the highest R² value was selected for further feature selection and model improvement. Molecular docking studies demonstrated that compound 15j had a strong binding affinity toward α-glucosidase, with a docking score of - 10.04 kcal/mol, and formed several remarkable interactions, particularly three key hydrogen bonds with TYR158, GLN353, and GLU411, contributing to its high inhibitory efficacy. The results of the molecular dynamics simulation demonstrated that the 15j-α-glucosidase complex exhibits high stability and effectively maintains its binding without causing significant structural changes in the enzyme, confirming the stable interaction and selective inhibition of this compound at the enzyme's active site.
Collapse
Affiliation(s)
- Fariba Peytam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Foroumadi
- International Campus-School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, via Mersin 10, Famagusta, TRNC, Turkey
- The Engineered Biomaterials Research Center, Khazar University, Baku, Azerbaijan
| | - Maryam Norouzbahari
- Faculty of Pharmacy, Final International University, Kyrenia via Mersin 10 Turkey, Catalkoy, TRNC, Turkey
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Torabi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang Y, Shou X, Xu Y, Zhou X. Versatile C─H Alkylation and Alkylidenation via Catalytic Alkylidene Transfer of Enones. Angew Chem Int Ed Engl 2025; 64:e202502619. [PMID: 40085079 DOI: 10.1002/anie.202502619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
The alkylidene transfer reactions of alkenes are of particular significance but challenging. Here, we report that enones can serve as diverse alkylidene sources for catalyst-controlled selective C─H alkylation and/or alkylidenation of various nucleophiles. Treatment of a mixture of ketone (or lactam), enone, and diarylmethanol, with a catalytic amount of Y[N(TMS)2]3, gave the corresponding α-C─H bond alkylation products derived from the alkylidene transfer from enones to ketones/lactams, whereas the reaction of enones with various C-nucleophiles in the presence of KOH as a catalyst resulted in C─H alkylidenation. Moreover, the application of these strategies for the late-stage modification or structural simplification of some bioactive molecules is also presented. These alkylidene transfer reactions are characterized by operational simplicity, mild reaction conditions, and remarkable catalyst-controlled product outcomes. These results not only demonstrate a significant potential for easily accessible and recyclable enones to serve as versatile alkylidene sources in C─H alkylation and alkylidenation but also provide an attractive and concise method for hydrodealkylidenation of electron-deficient alkenes.
Collapse
Affiliation(s)
- Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xiaoke Shou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yi Xu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, 200032, China
| |
Collapse
|
3
|
Newar UD, Kumar S, Borah A, Borra S, Manna P, Gokulnath S, Maurya RA. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J Org Chem 2024; 89:12378-12386. [PMID: 39171928 DOI: 10.1021/acs.joc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photocatalyst-free visible light-enabled direct oxygenation of furan-tethered α-azidoketones was studied. The reaction yielded various products depending on the substituents, with isoxazoles forming as the major products. The findings suggest that singlet oxygen was generated during the reaction and reacted with α-azidoketones in a [4 + 2] fashion to yield endoperoxides, which rearranged in multiple ways to generate isoxazoles. Some of the synthesized isoxazoles were evaluated as α-glucosidase inhibitors, and three of them 5bi, 5bj, and 5bl exhibited good activity with IC50 values of 454.57 ± 29.34, 147.84 ± 2.28, and 272.58 ± 42.06 μM, respectively, when compared with the standard drug acarbose (IC50 = 1224.33 ± 126.72 μM).
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Saurabh Kumar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Satheesh Borra
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
4
|
Li S, Liu G, Zhang Z, Chen R, Tian H, Wang H, Chen X. Metal free C-O bond cleavage: a new strategy for the synthesis of substituted oxazoles. RSC Adv 2024; 14:28210-28214. [PMID: 39234524 PMCID: PMC11372780 DOI: 10.1039/d4ra05122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
A strategy for the efficient metal-free C-O bond cleavage of ester using amines for the synthesis of substituted oxazoles was developed for the first time. The synthesis proceeded smoothly under metal-free conditions, combining C-O bond cleavage as well as C-N and C-O bond formation in one pot to yield desired products in moderate to excellent yields, and accommodated a wide range of functional groups and substrates.
Collapse
Affiliation(s)
- Shengwang Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Guiqin Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Zheyan Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Ruiling Chen
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Haiying Tian
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Huifeng Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Xiuling Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| |
Collapse
|
5
|
Fu R, Xu M, Wang Y, Wu X, Bao X. Organo-Photocatalytic Anti-Markovnikov Hydroamidation of Alkenes with Sulfonyl Azides: A Combined Experimental and Computational Study. Angew Chem Int Ed Engl 2024; 63:e202406069. [PMID: 38630112 DOI: 10.1002/anie.202406069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 05/22/2024]
Abstract
The construction of C(sp3)-N bonds via direct N-centered radical addition with olefins under benign conditions is a desirable but challenging strategy. Herein, we describe an organo-photocatalytic approach to achieve anti-Markovnikov alkene hydroamidation with sulfonyl azides in a highly efficient manner under transition-metal-free and mild conditions. A broad range of substrates, including both activated and unactivated alkenes, are suitable for this protocol, providing a convenient and practical method to construct sulfonylamide derivatives. A synergistic experimental and computational mechanistic study suggests that the additive, Hantzsch ester (HE), might undergo a triplet-triplet energy transfer manner to achieve photosensitization by the organo-photocatalyst under visible light irradiation. Next, the resulted triplet excited state 3HE* could lead to a homolytic cleavage of C4-H bond, which triggers a straightforward H-atom transfer (HAT) style in converting sulfonyl azide to the corresponding key amidyl radical. Subsequently, the addition of the amidyl radical to alkene followed by HAT from p-toluenethiol could proceed to afford the desired anti-Markovnikov hydroamidation product. It is worth noting that mechanistic pathway bifurcation could be possible for this reaction. A feasible radical chain propagation mechanistic pathway is also proposed to rationalize the high efficiency of this reaction.
Collapse
Affiliation(s)
- Rui Fu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Mengyu Xu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Yujing Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
6
|
Ye X, Pan H, Huang Y, Chen J, Wang Z. Photochemical three-component assembly of tri-substituted oxazoles through a carbenic phosphorus-nitrile hybrid ylide formation/trapping cascade. Chem Sci 2024; 15:6515-6521. [PMID: 38699275 PMCID: PMC11062088 DOI: 10.1039/d4sc01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 05/05/2024] Open
Abstract
Construction of complex molecular skeletons with ubiquitous chemical feedstocks in a single transformation is highly appealing in organic synthesis. We report a novel visible-light-induced three-component reaction for the construction of complex 2,4,5-trisubstituted oxazoles, which are valuable in medicinal chemistry, from simple and readily available iodonium-phosphonium hybrid ylides, carboxylic acids, and nitriles. This reaction features a carbenic phosphorus-nitrile hybrid ylide formation/trapping cascade, in which a photo-generated α-phosphonium carbene acts as a sequence trigger. This catalyst- and additive-free transformation exhibits high efficiency and broad substrate scope for synthesizing diverse oxazoles.
Collapse
Affiliation(s)
- Xingchen Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Huaijin Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zhaofeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
7
|
Luo M, Li L, Chen S, Yan Q, Lv J, Zeng J, Wang H, Gu S, Chen F. Synthesis of 2,4-Disubstituted Oxazoles and Thiazoles via Brønsted Acid-Catalyzed Cyclization of α-diazoketones with Amides. J Org Chem 2024; 89:5038-5048. [PMID: 38517950 DOI: 10.1021/acs.joc.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
A novel method is described for the synthesis of 2,4-disubstituted oxazole and thiazole derivates via the coupling of α-diazoketones with (thio)amides or thioureas using trifluoromethanesulfonic acid (TfOH) as a catalyst. This protocol is characterized by mild reaction conditions, metal-free, and simplicity and also features good functional group tolerance, good to excellent yields, and a broad substrate scope with more than 40 examples. Experimental studies suggest a mechanism involving 2-oxo-2-phenylethyl trifluoromethanesulfonate as the key intermediate.
Collapse
Affiliation(s)
- Mengxiang Luo
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lewan Li
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shixin Chen
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiongjiao Yan
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jian Lv
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jie Zeng
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Shuangxi Gu
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
8
|
Ying D, Shen X, Wang S, Chen J, Wu Z, Chen W, Wang F, Min J, Yu Y. Discovery of 4-hydroxyl pyrazole derivatives as potent ferroptosis inhibitors. Eur J Med Chem 2024; 263:115913. [PMID: 37950965 DOI: 10.1016/j.ejmech.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been well recognized as a pathogenic mechanism in driving many diseases, such as neurodegenerative disorders, ischemia-reperfusion (I/R) injury. Blocking ferroptosis has been emerging as a feasible therapeutic strategy for the prevention and treatment of these diseases. However, novel potent ferroptosis inhibitors remain to be developed for further clinical applications. In this study, we screened our in-house compound libraries by phenotypic assays and identified a 4-hydroxyl pyrazole derivative HW-3 with good ferroptosis inhibitory activity (EC50 = 120.1 ± 3.5 nM). Based on the structure of HW-3, a series of 4-hydroxyl pyrazole derivatives were further designed and synthesized. Among these compounds, compound 25 could significantly inhibit RSL3-induced ferroptosis with an EC50 value of 8.6 ± 2.2 nM in HT-1080 cells, which was 3-fold more potent than the classical ferroptosis inhibitor ferrostatin-1 (Fer-1) (EC50 = 23.4 ± 1.3 nM). The potent ferroptosis inhibitory activity of compound 25 was further validated in multiple additional cell lines. Our mechanistic study revealed that compound 25 inhibited ferroptosis via intrinsic radical-trapping antioxidative capacity. Taken together, the findings of our study demonstrate 4-hydroxyl pyrazole derivative 25 is a potent ferroptosis inhibitor, which holds a great therapeutic potential for further development.
Collapse
Affiliation(s)
- Danzhi Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Shen
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junyi Chen
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenying Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fudi Wang
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junxia Min
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Nguyen AT, Kim HK. Visible-light-mediated synthesis of oxime esters via multicomponent reactions of aldehydes, aryl amines, and N-hydroxyphthalimide esters. RSC Adv 2023; 13:31346-31352. [PMID: 37901270 PMCID: PMC10600831 DOI: 10.1039/d3ra06737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/31/2023] Open
Abstract
Oxime esters are useful scaffolds in many organic chemistry transformations. Herein, a novel visible-light-mediated three-component reaction for synthesis of oxime esters is reported. Aldehydes, aniline, and N-hydroxyphthalimide (NHPI) esters were used as substrates in this three-component reaction, and eosin Y was used as a crucial photocatalyst for the reaction. Wide ranges of aldehydes and NHPI esters were well tolerated in this reaction method, generating various oxime esters with high efficiency under mild reaction conditions. This visible-light-mediated methodology will be a promising approach to synthesize useful oxime esters in a single step.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
10
|
Bora K, Newar UD, Maurya RA. One-Pot, Five-Component Condensation Reaction of Isatin, Secondary Amines, Malononitrile, Alcohols, and Molecular Oxygen to Access 3-Functionalized 2-Oxindoles. J Org Chem 2023; 88:14216-14221. [PMID: 37675843 DOI: 10.1021/acs.joc.3c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An efficient five-component condensation reaction of isatin, malononitrile, secondary amines, alcohols, and molecular oxygen was discovered. The reaction was performed in a one-pot fashion, and it does not require any metal catalyst. It gives straightforward access to structurally diverse 2-oxo-3-aminoindoline-3-carboxylates in moderate yields (70-88%). The scope of the reaction was successfully demonstrated by synthesizing a series of 3-functionalized 2-oxindoles by varying the isatin, amine, and alcohol components.
Collapse
Affiliation(s)
- Kaushik Bora
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Sugitate K, Yamashiro T, Takahashi I, Yamada K, Abe T. Oxytrofalcatin Puzzle: Total Synthesis and Structural Revision of Oxytrofalcatins B and C. J Org Chem 2023. [PMID: 37433109 DOI: 10.1021/acs.joc.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The previously reported structures of oxytrofalcatins B and C possess a benzoyl indole core. However, following synthesis and NMR comparison of both the proposed structure and the synthesized oxazole, we have revised the structure of oxytrofalcatins B and C as oxazoles. The synthetic route developed herein can further our understanding of the biosynthetic pathways that govern the production of natural 2,5-diaryloxazoles.
Collapse
Affiliation(s)
- Kazuma Sugitate
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Ibuki Takahashi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|