1
|
Wang ZS, Hong DG, Li H, Loh TP, Lu MZ. Palladium-Catalyzed Ring-Opening Defluorinative Hiyama Cross-Coupling of gem-Difluorocyclopropanes with Arylsilanes. J Org Chem 2025; 90:6054-6062. [PMID: 40249904 DOI: 10.1021/acs.joc.5c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We report an efficient palladium-catalyzed ring-opening defluorinative Hiyama cross-coupling of gem-difluorocyclopropanes with structurally diverse (hetero)arylsilanes through C-C bond activation and C-F bond cleavage. This regioselective ring-opening defluorinative Hiyama cross-coupling features a broad substrate scope with excellent functional group compatibility, affording a diverse variety of linear 2-fluoroallylic scaffolds in good yields with high Z-selectivity.
Collapse
Affiliation(s)
- Zhi-Shang Wang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Dong-Guo Hong
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hongfang Li
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
2
|
Ahmed EAMA, Zhang H, Cao WG, Gong TJ. Palladium-catalyzed cross-coupling of gem-difluorocyclopropanes with gem-diborylalkanes: facile synthesis of a diverse array of gem-diboryl-substituted fluorinated alkenes. RSC Adv 2025; 15:10265-10272. [PMID: 40206388 PMCID: PMC11979899 DOI: 10.1039/d5ra00581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
This study introduces an efficacious palladium-catalyzed method for the regioselective and stereoselective cross-coupling of gem-difluorinated cyclopropanes with an array of gem-diborylalkanes under mild reaction conditions. The innovative methodology facilitates the synthesis of 2-fluoroallylic gem-diboronic esters with exceptional Z-stereo- and chemo-selectivity. Notably, this protocol extended to the ligand-modulated regio- and stereoselectivity divergence cross-coupling of 1,1-difluoro-2-vinylcyclopropane as a reaction partner. Furthermore, we explore further transformations of the fluorinated gem-diboronates, encompassing the oxidation to form ketone and hydrogenation to generate mono-fluorinated alkylated gem-diboronate.
Collapse
Affiliation(s)
- Ebrahim-Alkhalil M A Ahmed
- School of Chemistry and Materials Science, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Provincial Key Laboratory of Biomass Chemistry, University of Science and Technology of China Hefei 230026 China
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Hongchen Zhang
- College of Pharmacy, Wenzhou Medical University Wenzhou 325035 China
| | - Wen-Gen Cao
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Tian-Jun Gong
- School of Chemistry and Materials Science, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Provincial Key Laboratory of Biomass Chemistry, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
3
|
Liu W, Ma Y, Huang Q, Sheng J, Lv L, Li Z. Pd-IPent-Catalyzed Defluorinative Annulation of gem-Difluorocyclopropanes with Enamides: Synthesis of Multisubstituted N-H Pyrroles. Org Lett 2025; 27:2151-2156. [PMID: 39984819 DOI: 10.1021/acs.orglett.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
We present a Pd-IPent-catalyzed ring-opening defluorinative annulation reaction of gem-difluorocyclopropanes with enamides, which provides a convenient and efficient strategy for the synthesis of multisubstituted N-H pyrrole derivatives. This transformation selectively cleaves the C1-C3 bond, two C-F bonds, and the C-N bond in a one-pot procedure. Additionally, this protocol allows for the modification of several bioactive molecules.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yahui Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
4
|
Yan Y, Qian H, Lv L, Li Z. Pd-IHept-Catalyzed Ring-Opening of gem-Difluorocyclopropanes with Malonates Via Selective C-C Bond Cleavage: Synthesis of Monofluoroalkenes. J Org Chem 2024; 89:16253-16261. [PMID: 37737890 DOI: 10.1021/acs.joc.3c00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Monofluoroalkene scaffolds are frequently found in various functional molecules. Herein, we report a Pd-IHept-catalyzed (NHC = N-heterocyclic carbene) defluorinative functionalization approach for the synthesis of monofluoroalkenes from gem-difluorocyclopropanes and malonates. The flexible yet sterically hindered N,N'-bis(2,6-di(4-heptyl)phenyl)imidazol-2-ylidene ligand plays a key role in ensuring the high reaction efficiency. In addition, sterically hindered 1,1- and 1,2-disubstituted gem-difluorocyclopropanes could also be used in this transformation.
Collapse
Affiliation(s)
- Yuxuan Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Wang Z, Liu C, Huang J, Huang L, Feng H. Palladium-Catalyzed Regioselective Monofluoroallylation of Indoles with gem-Difluorocyclopropanes. Org Lett 2024; 26:6905-6909. [PMID: 39088798 DOI: 10.1021/acs.orglett.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
We present a palladium-catalyzed ring-opening reaction that induces indoles to cross-couple with gem-difluorocyclopropanes. The reaction proceeds through a domino process of C-C bond activation and C-F bond elimination, followed by C-C(sp2) coupling to produce various 2-fluoroallylindoles. This method is characterized by its high functional group tolerance, good yields and high regioselectivity, under base-free conditions. The synthetic utility of the products is illustrated by the functionalization of the NH and C2 positions of the indole scaffold.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
6
|
Su Z, Tan B, He H, Chen K, Chen S, Lei H, Chen TG, Ni SF, Li Z. Enantioselective Tsuji-Trost α-Fluoroallylation of Amino Acid Esters with Gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202402038. [PMID: 38412055 DOI: 10.1002/anie.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
A novel enantioselective Tsuji-Trost-type cross coupling reaction between gem-difluorinated cyclopropanes and N-unprotected amino acid esters enabled by synergistic Pd/Ni/chiral aldehyde catalysis is presented herein. This transformation streamlined the diversity-oriented synthesis (DOS) of optically active α-quaternary α-amino acid esters bearing a linear 2-fluoroallylic motif, which served as an appealing platform for the construction of other valuable enantioenriched compounds. The key intermediates were confirmed by HRMS detection, while DFT calculations revealed that the excellent enantioselectivity was attributed to the stabilizing non-covalent interactions between the Pd(II)-π-fluoroallyl species and the Ni(II)-Schiff base complex.
Collapse
Affiliation(s)
- Zheng Su
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Binhong Tan
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Kaifeng Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shixin Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510641, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, 528400, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Yang H, Zeng Y, Song X, Che L, Jiang ZT, Lu G, Xia Y. Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202403602. [PMID: 38515395 DOI: 10.1002/anie.202403602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Hui Yang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lin Che
- Linyi University, School of Chemistry and Chemical Engineering, Linyi, 276000, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
9
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Jiang Y, Ma HJ, Zhai CY, Wang XL. Sn(OTf) 2-Catalyzed (3 + 2) Cycloaddition/Sulfur Rearrangement Reaction of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. Org Lett 2024; 26:1672-1676. [PMID: 38359067 DOI: 10.1021/acs.orglett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The (3 + 2) cycloaddition/sulfur rearrangement reaction of donor-acceptor cyclopropanes bearing a single keto acceptor with indoline-2-thiones has been realized. Under the catalysis of Sn(OTf)2, a series of functionalized 3-indolyl-4,5-dihydrothiophenes were synthesized with moderate to excellent yields.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chen-Ying Zhai
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
11
|
Qian H, Cheng ZP, Luo Y, Lv L, Chen S, Li Z. Pd/IPr BIDEA-Catalyzed Hydrodefluorination of gem-Difluorocyclopropanes: Regioselective Synthesis of Terminal Fluoroalkenes. J Am Chem Soc 2024; 146:24-32. [PMID: 37830927 DOI: 10.1021/jacs.3c07992] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Developing new strategies to enable chemo- and regioselective reductions is an important topic in chemical research. Herein, an efficient and regioselective Pd/IPrBIDEA-catalyzed ring-opening hydrodefluorination of gem-difluorocyclopropanes to access terminal fluoroalkenes is developed. The success of this transformation was attributed to the use of 3,3-dimethylallyl Bpin as a novel hydride donor. DFT calculations suggest that a direct 3,4'-hydride transfer via a 9-membered cyclic transition state is more favorable, which combined with the irreversibility of the reaction enables the unusual selectivity for the less thermodynamically stable terminal alkene isomer. This reaction mode is also applicable to a variety of regioselective allylic and propargyl reductions.
Collapse
Affiliation(s)
- Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zachary P Cheng
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
12
|
Ahmed EAMA, Zhang H, Cao WG, Gong TJ. Palladium-Catalyzed Cross-Coupling of gem-Difluorocyclopropanes with gem-Diborylalkanes for the Synthesis of Boryl-Substituted Fluorinated Alkenes. Org Lett 2023; 25:9020-9024. [PMID: 38063840 DOI: 10.1021/acs.orglett.3c03626] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study presents a novel method for the regioselective coupling of gem-difluorinated cyclopropanes with gem-diborylmethane, utilizing a Pd-catalyst system. This innovative approach enables the synthesis of 2-fluoroalkenyl monoboronate scaffolds with high Z-selectivity. The resulting products undergo further transformations, including oxidation, Suzuki cross-coupling, and trifluoroborylation, all of which are achieved with good yields. This work introduces a valuable synthetic pathway to access important fluorinated compounds for various applications in organic chemistry.
Collapse
Affiliation(s)
| | - Hongchen Zhang
- College of pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Wen-Gen Cao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
13
|
Li D, Shen C, Si Z, Liu L. Palladium-Catalyzed Fluorinative Bifunctionalization of Aziridines and Azetidines with gem-Difluorocyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202310283. [PMID: 37572320 DOI: 10.1002/anie.202310283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/14/2023]
Abstract
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C-C and C-F bond cleavage of gem-difluorocyclopropanes, leading to various β,β'-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2 -coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.
Collapse
Affiliation(s)
- Dongdong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhiyao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
14
|
Lin P, Joshi C, McGinnis TM, Mallojjala SC, Sanford AB, Hirschi JS, Jarvo ER. Stereospecific Nickel-Catalyzed Cross-Electrophile Coupling Reaction of Alkyl Mesylates and Allylic Difluorides to Access Enantioenriched Vinyl Fluoride-Substituted Cyclopropanes. ACS Catal 2023; 13:4488-4499. [PMID: 37066042 PMCID: PMC10088041 DOI: 10.1021/acscatal.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Cross-electrophile coupling reactions involving direct C-O bond activation of unactivated alkyl sulfonates or C-F bond activation of allylic gem-difluorides remain challenging. Herein, we report a nickel-catalyzed cross-electrophile coupling reaction between alkyl mesylates and allylic gem-difluorides to synthesize enantioenriched vinyl fluoride-substituted cyclopropane products. These complex products are interesting building blocks with applications in medicinal chemistry. Density functional theory (DFT) calculations demonstrate that there are two competing pathways for this reaction, both of which initiate by coordination of the electron-deficient olefin to the low-valent nickel catalyst. Subsequently, the reaction can proceed by oxidative addition of the C-F bond of the allylic gem-difluoride moiety or by directed polar oxidative addition of the alkyl mesylate C-O bond.
Collapse
Affiliation(s)
- Patricia
C. Lin
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Chetan Joshi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Tristan M. McGinnis
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Amberly B. Sanford
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S. Hirschi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Elizabeth R. Jarvo
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Zhao YR, Ma ZY, Liu L, Gao P, Duan XH, Hu M. Synthesis of α-Difluoromethylene Ethers via Photoredox-Induced Hyperconjugative Ring Opening of gem-Difluorocyclopropanes. J Org Chem 2023; 88:3787-3793. [PMID: 36827360 DOI: 10.1021/acs.joc.2c03062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Fluorinated compounds have found widespread applications in pharmaceuticals, agrochemicals, and materials science. Precise construction of α-difluoromethylene ether (CF2-O) moiety in organic molecules is of high demand. Herein, a visible light-promoted reaction protocol for the synthesis of α-difluoromethylene ether from gem-difluorocyclopropane is described. The key ring-opening step is induced by hyperconjugative interaction of cyclopropane with photo-oxidized aromatic rings. This reaction is easy scale-up, and the products bearing a synthetic handle enable their further manipulation.
Collapse
Affiliation(s)
- Yu-Rou Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Yong Ma
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Wu X, Zeng Y, Jiang ZT, Zhu Y, Xie L, Xia Y. Lewis Acid-Catalyzed Ring-Opening Cross-Coupling Reaction of gem-Difluorinated Cyclopropanes Enabled by C–F Bond Activation. Org Lett 2022; 24:8429-8434. [DOI: 10.1021/acs.orglett.2c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Zeng Y, Yang H, Du J, Huang Q, Huang G, Xia Y. Rh-catalyzed regio-switchable cross-coupling of gem-difluorinated cyclopropanes with allylboronates to structurally diverse fluorinated dienes. Chem Sci 2022; 13:12419-12425. [PMID: 36382270 PMCID: PMC9629036 DOI: 10.1039/d2sc04118a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
The control of linear/branched selectivity is one of the major focuses in transition-metal catalyzed allyl-allyl cross-coupling reactions, in which bond connection occurs at the terminal site of both the allyl fragments forming different types of 1,5-dienes. Herein, terminal/internal regioselectivity is investigated and found to be switchable in allyl-allyl cross-coupling reactions between gem-difluorinated cyclopropanes and allylboronates. The controlled terminal/internal regioselectivity arises from the fine-tuning of the rhodium catalytic system. Fluorinated 1,3-dienes, 1,4-dienes and 1,5-dienes are therefore produced in good yields with respectively isomerized terminal, internal, and terminal regioselectivity.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Hui Yang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jiayi Du
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
18
|
Lv L, Qian H, Li Z. Catalytic Diversification of gem‐Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
19
|
Jiang ZT, Chen Z, Zeng Y, Shi JL, Xia Y. Enantioselective Formation of All-Carbon Quaternary Stereocenters in gem-Difluorinated Cyclopropanes via Rhodium-Catalyzed Stereoablative Kinetic Resolution. Org Lett 2022; 24:6176-6181. [PMID: 35951978 DOI: 10.1021/acs.orglett.2c02410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report an effective method to offer chiral gem-difluorinated cyclopropanes containing an all-carbon quaternary stereocenter by rhodium-catalyzed stereoablative kinetic resolution. The activation of a sterically hindered all-carbon quaternary C-C bond through oxidative addition with a chiral rhodium complex is proposed as the enantiodetermining step. A wide range of gem-difluorinated cyclopropanes can be obtained with excellent ee values (ee = 87% to >99.9%), which are demonstrated to be useful chiral fluorine-containing building blocks by a series of postfunctionalizations.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|