1
|
Nie Q, Sun C, Liu S, Li Q, Zotova M, Zhu T, Gao X. Enzymatic Ring Contraction for the Biosynthesis of Sulfur-Containing Cyclopentachromone. J Am Chem Soc 2025; 147:548-556. [PMID: 39680614 DOI: 10.1021/jacs.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cyclopentachromone, distinguished by its 6/6/5 heterotricyclic ring structure, is a key building block in many bioactive natural products, yet its enzymatic origin remains unclear. We identified a new class of cyclopentachromone-containing compounds, termed isochromosulfines, characterized by unique C-S bonds. A distinct FAD-dependent monooxygenase, IscL, was identified to catalyze the formation of the 6/6/5 cyclopentadiene intermediate, 2S-remisporine A, from a 6/6/6 xanthone precursor via benzene ring contraction. The high reactivity of 2S-remisporine A further promotes a spontaneous thiol-Michael addition reaction with thiol-containing compounds, forming the C-S bond in isochromosulfines. Additionally, we demonstrate that IscL homologues mediate a bifurcated pathway of benzene ring modification in the xanthone intermediate, leading to either ring contraction or cleavage, which is determined by a critical residue at position 230 to be phenylalanine or tyrosine. Our findings highlight the pivotal role of IscL in forming the 6/6/5 cyclopentachromone scaffold and offer deep insights into its catalytic mechanism. Our work lays the foundation for genome mining of cyclopentachromone-containing compounds and shows the potential application of IscL in biocatalysis.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Qiang Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Maria Zotova
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
2
|
Han X, Hou J, Zhang H, Wang Z, Yao W. Phosphine-catalyzed enantioselective and diastereodivergent [3+2] cyclization for the construction of oxetane dispirooxindole skeletons. Chem Commun (Camb) 2024; 60:10736-10739. [PMID: 39246022 DOI: 10.1039/d4cc03610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed a phosphine catalyzed asymmetric [3+2] cyclization of 3-oxetanone derived MBH carbonates with activated methyleneoxindole, to construct oxetane dispirooxindole skeletons. Diastereodivergent synthesis was realized via the control of the phosphine catalyst. The (-)-DIOP provides the syn diastereoisomers, while the spiro phosphine (R)-SITCP achieves the anti-epimers.
Collapse
Affiliation(s)
- Xiao Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
3
|
Hou J, Hao W, Chen Y, Wang Z, Yao W. Phosphine-Catalyzed Stereospecific and Enantioselective Desymmetrizative [3+2] Cycloaddition of MBH Carbonates and N-(2- tert-Butylphenyl)maleimides. J Org Chem 2024; 89:9068-9077. [PMID: 38822804 DOI: 10.1021/acs.joc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Herein, we report an l-valine-derived amide phosphine-catalyzed [3+2] cyclization of MBH carbonates and N-(2-tert-butylphenyl)maleimides via asymmetric desymmetrization. Bicyclic N-aryl succinimide derivatives bearing three continuous chiral centers with a remote C-N atropisomeric chirality were constructed stereospecifically and enantioselectively. A wide variety of MBH carbonates could be employed in this process to deliver highly optically pure succinimide derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
4
|
Li S, Pan M, Shen Y, Li Y, Li W. A Synthesis of α-Alkyl Cycloenones by Pd-Catalyzed Suzuki-Miyaura Coupling with Cyclic Morita-Baylis-Hillman Adducts. J Org Chem 2024; 89:5239-5249. [PMID: 38587356 DOI: 10.1021/acs.joc.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We herein disclose a Pd-catalyzed Suzuki-Miyaura coupling of cyclic Morita-Baylis-Hillman adducts with organoboronic acids under mild conditions, which allows for a rapid access to diverse α-alkyl substituted cycloenones. The advantage of this method resides in the employment of functionalized allyl alcohols as the unprecedented electrophilic partners in the absence of external activators.
Collapse
Affiliation(s)
- Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P R China
| | - Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P R China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P R China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P R China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P R China
| |
Collapse
|
5
|
Tan J, He Y, Lin Y, Zhong Y, He S, Zuo J, Yang C. Synthesis of 2-amino-9 H-chromeno[2,3- d]thiazol-9-ones with anti-inflammatory activity via cascade reactions of 2-amino-3 iodochromones with amines and carbon disulfide. RSC Adv 2024; 14:3158-3162. [PMID: 38249667 PMCID: PMC10797327 DOI: 10.1039/d3ra07209f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A simple and efficient synthetic approach to 2-amino-9H-chromeno[2,3-d]thiazol-9-ones via copper-promoted cascade reactions was developed. The reaction employed easily available 2-amino-3-iodochromones and amines as substrates and the targeting tricyclic compounds could be obtained with moderate to good yields. Even more important, several synthesized compounds exhibited potent anti-inflammatory activities, which suggested that this protocol may provide valuable hits for drug development in the future.
Collapse
Affiliation(s)
- Jiangtao Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Yifan He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Yu Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Yuanchen Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| |
Collapse
|
6
|
Wu LH, Liu X, Liu ZW, Chen ZX, Fu XL, Yang K. Metal-free synthesis of difluoro/trifluoromethyl carbinol-containing chromones via tandem cyclization of o-hydroxyaryl enaminones. Org Biomol Chem 2023; 21:9236-9241. [PMID: 37966029 DOI: 10.1039/d3ob01582c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein propose a HFIP-promoted tandem cyclization reaction for the synthesis of difluoro/trifluoromethyl carbinol-containing chromones from o-hydroxyphenyl enaminones at room temperature. This protocol provides a facile and efficient approach to access diverse difluoro/trifluoromethylated carbinols in good to excellent yields. In addition, gram-scale and synthetic derivatization experiments have also been performed.
Collapse
Affiliation(s)
- Long-Hui Wu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xia Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhao-Wen Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xin-Lei Fu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Kai Yang
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| |
Collapse
|
7
|
Zhou SS, Sun XY, Liu WK, Song JY, Wang Z, Qi ZH, Wang XW. COAP-Pd Catalyzed Asymmetric Allylic Alkylation of Azlactones with MBH Carbonates: Access to Unnatural α-Quaternary Stereogenic Glutamic Acid Derivatives. J Org Chem 2023; 88:11867-11873. [PMID: 37527492 DOI: 10.1021/acs.joc.3c01152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A palladium-catalyzed regioselective and asymmetric allylic alkylation of azlactones with MBH carbonates has been developed with chiral oxalamide-phosphine ligands. The corresponding reaction afforded a range of optically active γ-arylidenyl glutamic acid derivatives bearing an α-chiral quaternary stereocenter in good yields with excellent linear regio- and high enantioselectivity. This protocol furnishes an alternative approach for the construction of enantio-enriched unnatural α-amino acid derivatives.
Collapse
Affiliation(s)
- Sheng-Suo Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xing-Yun Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Wen-Kai Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jia-Yu Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Zheng-Hang Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
8
|
He X, Li R, Choy PY, Duan J, Yin Z, Xu K, Tang Q, Zhong RL, Shang Y, Kwong FY. An expeditious FeCl 3-catalyzed cascade 1,4-conjugate addition/annulation/1,5-H shift sequence for modular access of all-pyrano-moiety-substituted chromenes. Chem Sci 2022; 13:13617-13622. [PMID: 36507178 PMCID: PMC9682991 DOI: 10.1039/d2sc04431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
ortho-Alkynyl quinone methides are well-known four-atom synthons for direct [4 + n] cycloaddition in constructing useful oxa-heterocyclic compounds owing to their high reactivity as well as the thermodynamically favored aromatization nature of this process. Herein we report an operationally simple and eco-friendly protocol for the modular and regioselective access of (E)-4-(vinyl or aryl or alkynyl)iminochromenes from propargylamines and S-methylated β-ketothioamides in the presence of FeCl3, and particularly under undried acetonitrile and air atmosphere conditions. This method exhibits a broad substrate scope and displays nice functional group compatibility, thus providing an efficient access of 3,4-disubstituted iminochromenes.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute No. 10. Second Yuexing Road Shenzhen 518507 P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Zhenzhen Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Rong-Lin Zhong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute No. 10. Second Yuexing Road Shenzhen 518507 P. R. China
| |
Collapse
|