1
|
Huang Y, Zhu B, Li Q, Baryshnikov G, Li C, Sha F, Wu XY, Ågren H, Xie Y. A Class of Heptaphyrins with NIR Absorption Modulated by Metal Coordination and Nucleophilic Substitution. Chem Asian J 2024; 19:e202400575. [PMID: 39031934 DOI: 10.1002/asia.202400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
The intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination. As a result, chelation of 1 with Zn(II) and Cu(II) afforded mono-Zn(II) complex 2 and bis-Cu(II) complex 3, respectively, with the metal atoms exhibiting distorted square-planar geometries. In complex 3, an oxygen atom is attached to the α-C atom of N-confused pyrrole D, and thus the N and C atoms of ring D participate in coordination within the two cavities. Interestingly, treatment of 1 with Cs2CO3 in MeOH resulted in regioselective substitution of all the seven para-F atoms in the meso-C6F5 groups as well as the α-H of ring D by eight methoxy moieties. Complex 3 displays a red-shifted absorption band edge of ca. 2200 nm, compared to that of ca. 1600 nm observed for 1. This work provides an example of incorporating an N-confused pyrrole to construct expanded porphyrins with distinctive coordination behavior and tunable NIR absorption.
Collapse
Affiliation(s)
- Yanping Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bin Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qizhao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Institution Laboratory of Organic Electronics, Linköping University, Norrköping, SE-60174, Sweden
| | - Chengjie Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Sha
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden
| | - Yongshu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Xu Y, Zhu B, Zhang L, Baryshnikov G, Sha F, Nishimoto E, Takano H, Li C, Wu X, Ågren H, Shinokubo H, Xie Y, Li Q. Syntheses of Thiophene-Thiophene-Linked Corrorin Dimers with Tunable Near-Infrared Absorption and Distinctive Reactivity. Org Lett 2024. [PMID: 38190656 DOI: 10.1021/acs.orglett.3c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Thiahexaphyrinone 1 and thia-dipyrrin-appended corrorin 2 have been synthesized. Surprisingly, further oxidation of compound 2 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dichloromethane afforded dimer 3 with two molecules of compound 2 linked at the α-carbon atoms of the thienyl units. Treatment of compound 3 with DDQ in MeOH and SnCl2 in tetrahydrofuran/H2O afforded the dimethoxy-attached dimer 4 and hydrogenated dihydroxy-attached dimer 5, respectively. These results provide the first examples for synthesizing thiophene-linked porphyrinoid dimers with tunable near-infrared absorption and chirality.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Bin Zhu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lingfang Zhang
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-601 74 Norrköping, Sweden
| | - Feng Sha
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Emiko Nishimoto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hideaki Takano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|