1
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Wang QD, Ren JA, Cao XR, Zhou X, Yang JM, Shen ZL. Palladium-catalyzed α-arylation of sulfoxonium ylides with aryl fluorosulfates. Org Biomol Chem 2025; 23:1412-1417. [PMID: 39745244 DOI: 10.1039/d4ob01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates via C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification. In addition, the reaction could be readily scalable and applied in the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Jing-Ao Ren
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xu-Rong Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Anand V, Rastogi N. Perhaloacylation of α-Carbonyl Sulfoxonium Ylides. J Org Chem 2025. [PMID: 39893681 DOI: 10.1021/acs.joc.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A mild and efficient protocol for the perhaloacylation of α-carbonyl sulfoxonium ylides has been developed. The commercially available perfluoro- and perchloroacid anhydrides were used as acylating agents in catalyst- and additive-free reactions to access α-carbonyl-α'-perhaloacyl sulfoxonium ylides in high yields. The reaction offers a simple method to prepare valuable polyfluorinated organosulfur molecules.
Collapse
Affiliation(s)
- Varun Anand
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
O’Shaughnessy C, Mondal M, Kerrigan NJ. Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides. Molecules 2025; 30:655. [PMID: 39942761 PMCID: PMC11820446 DOI: 10.3390/molecules30030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
This review probes the recent developments in stereoselective reactions within the area of sulfoxonium ylide chemistry since the early 2000s. An abundance of research has been applied to sulfoxonium ylide chemistry since its emergence in the early 1960s. There has been a continued effort since then with work in traditional areas, such as epoxidation, aziridination and cyclopropanation. Efforts have also been applied in novel areas, such as olefination and insertion reactions, to develop stereoselective methodologies using organocatalysis and transition metal catalysis. The growing research area of interrupted Johnson-Corey-Chaykovsky reactions is also described, whereby unexpected stereoselective cyclopropanation and epoxidation methodologies have been developed. In general, the most observed mechanistic pathway of sulfoxonium ylides is the formal cycloaddition: (2 + 1) (e.g., epoxides, cyclopropanes, aziridines), (3 + 1) (e.g., oxetanes, azetidines), (4 + 1) (e.g., indanones, indolines). This pathway involves the formation of a zwitterionic intermediate through nucleophilic addition of the carbanion to an electrophilic site. An intramolecular cyclization occurs, constructing the cyclic product. Insertion reactions of sulfoxonium ylides to X-H bonds (e.g., X = S, N or P) are also observed, whereby protonation of the carbanion is followed by a nucleophilic addition of X, to form the inserted product.
Collapse
Affiliation(s)
- Ciarán O’Shaughnessy
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland;
| | - Mukulesh Mondal
- Department of Chemistry, Oakland University, Rochester, MI 40309, USA;
| | - Nessan J. Kerrigan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland;
| |
Collapse
|
5
|
Tian H, Wang Q, Wei W, Chen Y, Zhong X, Yao G, Chen X, Zhao G, Kong D. Synthesis of α-Carbonyl-α'-sulfenyl Sulfoxonium Ylides in Water at Room Temperature. J Org Chem 2024; 89:15523-15528. [PMID: 39425656 DOI: 10.1021/acs.joc.4c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
An efficient synthesis of α-carbonyl-α'-sulfenyl sulfoxonium ylides through a KIO3-promoted cross-dehydrogenative coupling reaction of aryl thiols and α-carbonyl sulfoxonium ylides in an aqueous medium at room temperature has been described. The α-carbonyl sulfoxonium ylides and aryl thiols adorned with various functional groups were well-tolerated and afforded moderate to high yields of α-carbonyl-α'-sulfenyl sulfoxonium ylide derivatives. Finally, by converting synthesized ylide 3a into other valuable compounds, we demonstrated the practicality of this synthetic method.
Collapse
Affiliation(s)
- Haoyu Tian
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Qinghe Wang
- Venturepharm Pharmaceuticals (Hainan) Co., Ltd., No. 279, Nanhai Avenue, Haikou 570100, Hainan Province, China
| | - Wenyan Wei
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Yan Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Xia Zhong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Guiwei Yao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Xun Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Guangkuan Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Dulin Kong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| |
Collapse
|
6
|
Jian Y, He YJ, Hu C, Li X, Liu PN. Catalyst-Free [4+1] Annulation of α-Imidoyl Sulfoxonium Ylides and Diazo Compounds Enabling the Modular Synthesis of 2-Indanones and 3(2 H)-Furanones. Org Lett 2024; 26:8492-8497. [PMID: 39331512 DOI: 10.1021/acs.orglett.4c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
A novel substrate-regulated [4+1] annulation of α-imidoyl sulfoxonium ylides with diazoketones under catalyst-free conditions is described. The reaction proceeds through a coupling of sulfoxonium ylides and in situ-generated ketenes to form the key reactive zwitterionic intermediates, followed by selective formation of C-C or C-O bonds to achieve five-membered ring systems. The cascade reaction permits the direct synthesis of synthetically useful 2-indanones and 3(2H)-furanones, which expands the reaction pattern of sulfoxonium ylides in annulation transformation.
Collapse
Affiliation(s)
- Yong Jian
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No.555 Huanqiao Road, Pudong New Area, Shanghai 201315, P. R. China
| | - Yu-Jie He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chao Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
8
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
10
|
Sun Q, Peng Y, Wang Y, Bao X. Construction of α-Acyloxy Ketones via Photoredox-Catalyzed O-H Insertion of Sulfoxonium Ylides with Carboxylic Acids. Org Lett 2023; 25:6613-6617. [PMID: 37672752 DOI: 10.1021/acs.orglett.3c02221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, a photoredox-catalyzed insertion of sulfoxonium ylides with carboxylic acids was advanced under mild and simple conditions, offering a practical approach for preparing α-acyloxy ketones with a broad scope of carboxylic acids. A combined experimental and computational study suggests that this reaction proceeds via a stepwise proton-assisted electron transfer mechanism.
Collapse
Affiliation(s)
- Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujing Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Fu D, Xi C, Xu J. Demethyl oxidative halogenation of diacyl dimethylsulfonium methylides. Org Biomol Chem 2023; 21:3991-3996. [PMID: 37114954 DOI: 10.1039/d3ob00499f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
α-Halo-α-methylthio-β-ketosulfones containing a quaternary halocarbon stereocenter were prepared via selective demethyl oxidative halogenations of diacyl dimethylsulfonium methylides in moderate to excellent yields (39 examples; up to 98%). The current protocols directly and efficiently introduce a halogen atom into organic compounds with high functional group tolerance under metal-free conditions.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Changmeng Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Gola AK, Sharma A, Pandey SK. Synthesis of α-Carbonyl-α'-amide Sulfoxonium Ylides from Isocyanates with Complete Atom Economy. Org Lett 2023; 25:1214-1217. [PMID: 36757361 DOI: 10.1021/acs.orglett.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
An efficient catalyst- and additive-free facile synthesis of α-carbonyl-α'-amide sulfoxonium ylides from isocyanates and β-ketosulfoxonium ylides with complete atom economy has been described. The β-ketosulfoxonium ylides and isocyanates adorned with various functional groups were well-tolerated and afforded moderate to high yields of the α-carbonyl-α'-amide sulfoxonium ylide derivatives. Finally, using large-scale reactions and converting the synthesized ylides into other valuable compounds, we demonstrated the practicality of this synthetic method.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
13
|
Braga FC, Ramos TO, Brocksom TJ, de Oliveira KT. Synthesis of Fentanyl under Continuous Photoflow Conditions. Org Lett 2022; 24:8331-8336. [DOI: 10.1021/acs.orglett.2c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Felipe C. Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Tiago O. Ramos
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J. Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|