1
|
Doraghi F, Hossein Morshedsolouk M, Raisi N, Hosseinifar T, Noori M, Larijani B, Mahdavi M. Transition Metal-Catalyzed Aminocarbonylation Reactions. CHEM REC 2025:e202500029. [PMID: 40342261 DOI: 10.1002/tcr.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Transition-metal-catalyzed aminocarbonylation reactions using low-cost and accessible CO gas as a C1 building block and amine as a nucleophile have been widely used to prepare amides, which are broadly exist in bioactive drugs, natural products, and polymers. This type of reaction has also been applied to construct various biologically active heterocycles. In this review, we highlight aminocarbonylation reactions involving amine and CO under various transition metal catalysis systems (palladium, rhodium, ruthenium, iridium, iron, copper, and cobalt) over the past decade.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Morshedsolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Niki Raisi
- School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Tolou Hosseinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang YQ, Chen LJ, Yang RL, Lang M, Peng JB. Oxidative [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with o-Hydroxyphenyl Propargylamines: Syntheses of 5,6,7-Trisubstituted Indolizines. Chemistry 2024; 30:e202402487. [PMID: 39177474 DOI: 10.1002/chem.202402487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Li-Jia Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Rui-Lin Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| |
Collapse
|
3
|
Liang B, Xiao D, Wang SH, Xu X. Novel thiosemicarbazide-based β-carboline derivatives as α-glucosidase inhibitors: Synthesis and biological evaluation. Eur J Med Chem 2024; 275:116595. [PMID: 38875808 DOI: 10.1016/j.ejmech.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
In the quest for potent α-glucosidase inhibitors to combat diabetes, a series of novel thiosemicarbazide-based β-carboline derivatives (CTL1∼36) were synthesized and evaluated. CTL1∼36 exhibited remarkable inhibitory effects against α-glucosidase, with IC50 values ranging from 2.81 to 12.40 μM, significantly surpassing the positive control acarbose (IC50 = 564.28 μM). Notably, CTL26 demonstrated the most potent inhibition (IC50 = 2.81 μM) and was characterized as a non-competitive inhibitor. Through a combination assay with fluorescence quenching, 3D fluorescence spectra, CD spectra, and molecular docking, we elucidated that CTL26 formed a complex with α-glucosidase via hydrogen bondings and hydrophobic interactions, leading to α-glucosidase conformation changes that impaired enzymatic activity. In vivo studies revealed that oral administration of CTL26 (25 and 50 mg/kg/d) reduced fasting blood glucose levels, enhanced glucose tolerance, and ameliorated lipid abnormalities in diabetic mice. These findings positioned CTL26 as a promising candidate for the development of α-glucosidase inhibitors with anti-diabetic potential.
Collapse
Affiliation(s)
- Bingwen Liang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Di Xiao
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
4
|
Feng M, Liang B, Sun J, Min X, Wang SH, Lu Y, Xu X. Synthesis, anti-α-glucosidase activity, inhibition interaction, and anti-diabetic activity of novel cryptolepine derivatives. J Mol Struct 2024; 1310:138311. [DOI: 10.1016/j.molstruc.2024.138311] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Li L, Ji MM, Tang Y, Wang WF, Peng JB. Palladium-Catalyzed Cascade Carbonylation Reaction: Synthesis of Fused Isoindolinones. Org Lett 2024; 26:5625-5629. [PMID: 38953484 DOI: 10.1021/acs.orglett.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A palladium-catalyzed cascade carbonylation reaction of 2-bromo-N-(2-iodophenyl)benzamides with benzylidenecyclopropanes for the synthesis of fused isoindolinone derivatives has been developed. A broad range of 6/5/6/6 tetracyclic isoindolinone products were efficiently prepared in moderate to good yields with diverse substitution. Two carbonyl groups were incorporated into the substrates in a single step with the formation of four carbon-carbon bonds and two carbon-heteroatom bonds.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Miao-Miao Ji
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ying Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Wei-Feng Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
6
|
Zhang Z, Ji MM, Wu XF, He YY, Peng JB. Synthesis of Multisubstituted 2,3-Allenamides via Palladium-Catalyzed Carbonylation of Propargylic Esters. J Org Chem 2024; 89:9001-9010. [PMID: 38842478 DOI: 10.1021/acs.joc.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
2,3-Allenamides are an important class of unsaturated group-substituted carbonyl compounds. A palladium-catalyzed aminocarbonylation of propargyl acetates with amines for the synthesized tri-/tetrasubstituted 2,3-allenamides has been developed. A broad range of tri-/tetrasubstituted 2,3-allenamides have been prepared from propargyl acetates in good to excellent yields. The reaction featured mild reaction conditions and good functional group tolerance. The applicability of this methodology was further highlighted by the late-stage modification of several natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Miao-Miao Ji
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiao-Feng Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
7
|
Zhou J, Meng L, Yang Z, Wang JJ. Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400096. [PMID: 38477439 DOI: 10.1002/advs.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ziyi Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Li M, Xu S, Chen DP, Gao F, Li SX, Zhu SX, Qiu YF, Quan ZJ, Wang XC, Liang YM. Palladium-Catalyzed Three-Component Cascade Carbonylation Reaction to Construct Benzofuran Derivatives. J Org Chem 2024. [PMID: 38741558 DOI: 10.1021/acs.joc.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.
Collapse
Affiliation(s)
- Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shanmei Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shuang-Xi Zhu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
9
|
Ji MM, Liu PR, Yan JD, He YY, Li H, Ma AJ, Peng JB. Ruthenium-Catalyzed Carbonylation of α-Aminoaryl-Tethered Alkylidenecyclopropanes: Synthesis of Eight-Membered Benzolactams. Org Lett 2024; 26:231-235. [PMID: 38165133 DOI: 10.1021/acs.orglett.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of medium-sized lactams is a great challenge because of the unfavorable transannular interactions and entropic barriers in the transition state. We have developed a ruthenium-catalyzed carbonylation of α-aminoaryl-tethered alkylidenecyclopropanes (ACPs) that allows for the efficient preparation of valuable eight-membered benzolactams under ligand-free conditions. The amino group served a dual role of both directing group and nucleophile to facilitate the metallacycle formation and the carbonylation.
Collapse
Affiliation(s)
- Miao-Miao Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Peng-Rui Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jun-Dong Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hongguang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
10
|
Zhou J, Meng L, Lin S, Cai B, Wang J. Palladium-catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. Angew Chem Int Ed Engl 2023:e202303727. [PMID: 37186017 DOI: 10.1002/anie.202303727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCP) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCP via highly selective C-C bond cleavage. This allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of product enantioselectivity.
Collapse
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Ling Meng
- Hong Kong Baptist University, Department of Chemistry, HONG KONG
| | - Shujuan Lin
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Department of Chemistry, CHINA
| | - Baohua Cai
- Southern University of Science and Technology, Department of Chemistry, CHINA
| | - Jun Wang
- Hong Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 000000, Hong Kong, HONG KONG
| |
Collapse
|
11
|
Li M, Li SX, Chen DP, Gao F, Qiu YF, Wang XC, Quan ZJ, Liang YM. Regioselective C-H Active Carbonylation via 1,4-Palladium Migration. Org Lett 2023; 25:2761-2766. [PMID: 37052909 DOI: 10.1021/acs.orglett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We report a highly regioselective three-component coupling reaction of styrene, CO gas, and an amine compound to synthesize multisubstituted α,β-unsaturated amides, which involves a palladium-catalyzed sequential 1,4-palladium migration, C(sp2)-H activation, carbonylation, and amination. Salient features of this strategy include the use of 1 atm of CO, excellent stereochemistry, and good functional group tolerance. Further, a series of control experiments and density functional theory calculations were performed to afford some insights for the transfer mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Li L, Zeng HH, Zhang YY, Liang JY, Zhang XZ, Peng JB. Pd/Cu catalyzed carbonylation of α-aminoaryl-tethered alkylidenecyclopropanes: synthesis of furoquinoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Pd/Cu catalyzed carbonylation of α-aminoaryl-tethered ACPs for the synthesis of furoquinoline derivatives has been developed. Oxygen was used as the terminal oxidant.
Collapse
Affiliation(s)
- Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hui-Hui Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - You-Ya Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Yan Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|