1
|
Xu X, Li J, Wang L, Yue X, Zhang F, Lan D, Zhang X, Xu H, Che Q, Zhu T, Li D, Xu X, Zhang G. Antibacterial and cytotoxic angucyclines discovered by heterologous expression of a type II polyketide gene cluster. Org Biomol Chem 2025; 23:3450-3458. [PMID: 40084771 DOI: 10.1039/d5ob00190k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Three new aromatic polyketides, spirocyclione C (1) and angumycinones E and F (2 and3), were isolated from the heterologous expression of a type II gene cluster in the strain of Streptomyces coelicolor A3(2) assisted by the one strain many compounds (OSMAC) strategy. The structures and absolute configurations of these compounds were elucidated by extensive NMR, MS, theoretical NMR calculations, DP4+ probability analysis, and ECD analyses. Notably, compound 1 represents the first example of an angucycline structure with an unusual oxaspiro[5.4]undecane architecture. Directed by molecular docking and dynamics simulations, the bioactivities of compounds 1-3 were evaluated. Compounds 1 and 2 exhibited promising cytotoxic activity against a panel of human cancer cell lines, and compound 1 showed moderate antibacterial activity against clinical pathogenic strains of B. subtilis, P. vulgaris, B. cereus, M. phlei and MRSA.
Collapse
Affiliation(s)
- Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Lang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Xinchen Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Donghe Lan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Hengyi Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
2
|
Yi R, Shi Y, Cao X, Pan C. Actinomycetes: Treasure trove for discovering novel antibiotic candidates. Eur J Med Chem 2025; 286:117317. [PMID: 39884098 DOI: 10.1016/j.ejmech.2025.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Actinomycetes are an important source of secondary metabolites such as antibiotics and other active natural products. Many well-known antibiotics, such as streptomycin, oxytetracycline, and tetracycline, are produced by actinomycetes. Different types of antibiotics have distinct mechanisms of action against microorganisms: inhibit protein synthesis, inhibit nucleic acid synthesis, or inhibit cell wall synthesis. For decades, actinomycetes have played a crucial role in clinical treatment for major diseases such as pathogenic bacterial infections, serving as one of the most significant sources of new discoveries. However, due to extensive use of antibiotics, the types and numbers of drug-resistant bacteria, represented by multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, have increased dramatically in clinical settings, posing a significant threat to human survival. Therefore, there is an urgent need to search for structurally novel antibacterial natural products and develop new antibiotics. In this review, a total of 170 antibacterial secondary metabolites from actinomycetes, published in the 54 literatures (2020 to September 2024) and some synthetic analogs, are discussed with emphasis on their structures and biological activities.
Collapse
Affiliation(s)
- Rexing Yi
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yutong Shi
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, China
| | - Xun Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Chengqian Pan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Liu HS, Chen HR, Huang SS, Li ZH, Wang CY, Zhang H. Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023. Mar Drugs 2025; 23:25. [PMID: 39852527 PMCID: PMC11766693 DOI: 10.3390/md23010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Angucyclines/angucyclinones, a class of polyketides with diverse chemical structures, display various bioactivities including antibacterial or antifungal, anticancer, anti-neuroinflammatory, and anti-α-glucosidase activities. Marine and terrestrial microorganisms have made significant contributions to the discovery of bioactive angucyclines/angucyclinones. This review covers 283 bioactive angucyclines/angucyclinones discovered from 1965 to 2023, and the emphasis is on the biological origins, chemical structures, and biological activities of these interesting natural products.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China; (H.-S.L.); (H.-R.C.); (S.-S.H.); (Z.-H.L.); (C.-Y.W.)
| |
Collapse
|
4
|
Zhang X, Zhang F, Li C, Li J, Xu X, Zhu T, Che Q, Li D, Zhang G. Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074. Mar Drugs 2024; 22:480. [PMID: 39590760 PMCID: PMC11595736 DOI: 10.3390/md22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
5
|
Vysloužilová D, Kováč O. The Chemistry of Angucyclines. Chempluschem 2024; 89:e202400307. [PMID: 38958029 DOI: 10.1002/cplu.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Angucyclines and angucyclinones represent a class of natural compounds that belong to the group of aromatic polyketides. They exhibit a wide array of biological properties, such as antimicrobial, antiviral, and cytotoxic. Their considerable therapeutic potential and diverse scaffolds have attracted many synthetic chemists to devise novel strategies to construct their intricate molecular architecture. Over 300 class members have been isolated from natural sources, mainly from bacterial strains of Streptomyces species. This review highlights recent advancements in their synthesis, such as oxidative cyclization, photooxidation, and metal-catalyzed [4+2]-cycloaddition, which has facilitated the efficient and practical total syntheses of various angucycline and angucyclinone natural products.
Collapse
Affiliation(s)
- Denisa Vysloužilová
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Ondřej Kováč
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| |
Collapse
|
6
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
7
|
Kim JG, Lee B, Han JS, Oh T, Park B, Cho YB, An BK, Choi JW, Ko SK, Lee MK, Hong YS, Hwang BY. Targeted Isolation of N-Acetylcysteine-Containing Angucycline Derivatives from Streptomyces sp. MC16 and Their Antiproliferative Effects. ACS OMEGA 2023; 8:38263-38271. [PMID: 37867696 PMCID: PMC10586447 DOI: 10.1021/acsomega.3c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS/MS)-based molecular networking analysis was applied to Streptomyces sp. MC16. The automatic classification of the MolNetEnhancer module revealed that its major constituent was an angucycline derivative. By targeted isolation of unique clusters in the molecular network, which showed different patterns from typical angucycline compounds, two new N-acetylcysteine-attached angucycline derivatives (1 and 2) were isolated. The structures were elucidated based on intensive NMR analysis and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). All isolated compounds (1-4) were tested for their inhibitory effects on the proliferation of A431, A549, and HeLa cell lines. Antibiotics 100-1 (3) and vineomycinone B2 (4) showed moderate inhibitory effects on these three cell lines with IC50 values ranging from 18.5 to 59.0 μM, while compounds 1 and 2 with an additional N-acetylcysteine residue showed weak inhibitory effects only on the HeLa cell line with IC50 values of 54.7 and 65.2 μM, respectively.
Collapse
Affiliation(s)
- Jun Gu Kim
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Byeongsan Lee
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Jae Sang Han
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Taehoon Oh
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Beomcheol Park
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Yong Beom Cho
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Beom Kyun An
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jin Won Choi
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sung-Kyun Ko
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Mi Kyeong Lee
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Young-Soo Hong
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Bang Yeon Hwang
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| |
Collapse
|
8
|
Guo FW, Zhang Q, Gu YC, Shao CL. Sulfur-containing marine natural products as leads for drug discovery and development. Curr Opin Chem Biol 2023; 75:102330. [PMID: 37257309 DOI: 10.1016/j.cbpa.2023.102330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Among the large series of marine natural products (MNPs), sulfur-containing MNPs have emerged as potential therapeutic agents for the treatment of a range of diseases. Herein, we reviewed 95 new sulfur-containing MNPs isolated during the period between 2021 and March 2023. In addition, we discuss that the widely used strategies and the emerging technologies including natural product-based antibody drug conjugates (ADCs), small-molecule-based proteolysis targeting chimeras (PROTACs), nanotechnology-based drug carriers, artificial intelligence (AI)-driven drug discovery have been used for improving the efficiency and success rate of NP-based drug development. We also provide perspectives regarding the challenges and opportunities in sulfur-containing MNPs based drug discovery and development and future research directions.
Collapse
Affiliation(s)
- Feng-Wei Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao, 266237, China
| | - Qun Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
9
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2023; 40:223-227. [PMID: 36756783 DOI: 10.1039/d3np90007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as euphylonoid A from Euphorbia hylonoma.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|