1
|
Zhu Z, Wu X, Li Z, Nicewicz DA. Arene and Heteroarene Functionalization Enabled by Organic Photoredox Catalysis. Acc Chem Res 2025; 58:1094-1108. [PMID: 40071843 PMCID: PMC11984381 DOI: 10.1021/acs.accounts.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
ConspectusAromatic functionalization reactions are some of the most fundamental transformations in organic chemistry and have been a mainstay of chemical synthesis for over a century. Reactions such as electrophilic and nucleophilic aromatic substitution (EAS and SNAr, respectively) represent the two most fundamental reaction classes for arene elaboration and still today typify the most utilized methods for aromatic functionalization. Despite the reliable reactivity accessed by these venerable transformations, the chemical space that can be accessed by EAS and SNAr reactions is inherently limited due to the electronic requirements of the substrate. In the case of EAS, highly active electrophiles are paired with electron-neutral to electron-rich (hetero)arenes. For SNAr, highly electron-deficient (hetero)arenes that possess appropriate nucleofuges (halides, -NO2, etc.) are required for reactivity. The inherent limitations on (hetero)arene reactivity presented an opportunity to develop alternative reactivity to access increased chemical space to expand the arsenal of reactions available to synthetic chemists.For the past decade, our research has concentrated on developing novel methods for arene functionalization, with a particular focus on electron-neutral and electron-rich arenes and applying these methods to late-stage functionalization. Specifically, electron-rich arenes undergo single electron oxidation by a photoredox catalyst under irradiation, forming arene cation radicals. These cation radicals act as key intermediates in various transformations. While electron-rich arenes are typically unreactive toward nucleophiles, arene cation radicals are highly reactive and capable of engaging with common nucleophiles.This Account details the dichotomy of reactivity accessed via arene cation radicals: C-H functionalization by nucleophiles under aerobic conditions or cation radical accelerated nucleophilic aromatic substitution (CRA-SNAr) in anaerobic settings. Based on experimental and computational studies, we propose that reversible nucleophilic addition to arene cation radicals can occur at the ipso-, para-, or ortho-positions relative to the most electron-releasing group. Under aerobic conditions, intermediates formed by para- or ortho-addition typically undergo an additional irreversible oxidation step, resulting in C-H functionalization as the major outcome. Conversely, in the absence of an external oxidant, C-H functionalization is not observed, and ipso-addition predominates, releasing an alcohol or HF nucleofuge, leading to SNAr products. Building on the success of these arene functionalization transformations, we also explored their applications to positron emission tomography (PET) radiotracer development. Both C-H functionalization and SNAr with 18F- and 11CN- have been applied to radiofluorination and radiocyanation of arenes, respectively. Applications of the radiotracers synthesized by these methods have been demonstrated in preclinical and clinical models.
Collapse
Affiliation(s)
- Zhengbo Zhu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xuedan Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
2
|
Maiti R, Chakraborty J, Kumar Sahoo P, Nath I, Dai X, Rabeah J, De Geyter N, Morent R, Van Der Voort P, Das S. A Covalent Triazine Framework for Photocatalytic Anti-Markovnikov Hydrofunctionalizations. Angew Chem Int Ed Engl 2024; 63:e202415624. [PMID: 39404602 DOI: 10.1002/anie.202415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/17/2024]
Abstract
Porous materials-based heterogeneous photocatalysts, performing selective organic transformations, are increasing the applicability of photocatalytic reactions due to their ability to merge traditional photocatalysis with structured pores densely decorated with catalytic moiety for efficient mass and charge transfer, as well as added recyclability. We herein disclose a porous crystalline covalent triazine framework (CTF)-based heterogeneous photocatalyst that exhibits excellent photoredox properties for different hydrofunctionalization reactions such as hydrocarboxylations, hydroamination and hydroazidations. The high oxidizing property of this CTF enables the activation of styrenes, followed by regioselective C-N and C-O bond formation at ambient conditions. A change in the physicochemical and optoelectronic properties of the CTF, upon protonation during catalysis, lies at the basis of its photocatalytic properties. This allows us to obtain hydrocarboxylations, hydroamination, and hydroazidations from a myriad of electron-donating and -withdrawing aromatic and aliphatic substrates. This catalytic approach is further extended to late-stage functionalization of bio-active molecules. Finally, detailed characterizations of the CTF and further mechanistic investigations provide mechanistic insights into these reactions.
Collapse
Affiliation(s)
- Rakesh Maiti
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Jeet Chakraborty
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | | | - Ipsita Nath
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
4
|
Wang L, Lv Z, Yang L, Wu X, Zhu Y, Liu L, Zhao Y, Huang Z, Nicewicz DA, Wu Z, Chen Y, Li Z. First-in-Human Evaluation of [ 18F]FDOPA Produced by Organo-Photoredox Reactions. Bioconjug Chem 2024; 35:1160-1165. [PMID: 39023912 DOI: 10.1021/acs.bioconjchem.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoredox is a powerful synthetic tool in organic chemistry and has been widely used in various fields, including nuclear medicine and molecular imaging. In particular, acridinium-based organophotoredox radiolabeling has significantly impacted the production and discovery of positron emission tomography (PET) agents. Despite their extensive use in preclinical research, no PET agents synthesized by acridinium photoredox labeling have been tested in humans. [18F]FDOPA is clinically used for tumor diagnosis and the evaluation of neuropsychiatric disorders, but its application is limited by complex synthesis methods, the need for expensive modules, and/or the high cost of consumable materials/cassettes. In this report, we integrated a photoredox labeling unit with an automated module and produced [18F]FDOPA for human study. This research not only represents the first human study of a PET agent generated by acridinium-based organophotoredox reactions but also demonstrates the safety of this novel labeling method, serving as a milestone/reference for the clinical translation of other PET agents generated by this technique in the future.
Collapse
Affiliation(s)
- Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhiyu Lv
- Department of Neurology Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Xuedan Wu
- LED Radiofluidics Corp., 250 Bell Tower Drive, Genome Science Building, Chapel Hill, North Carolina 27599, United States
| | - Yan Zhu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Lin Liu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Yan Zhao
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Zhanhong Wu
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
6
|
Cheng K, Webb EW, Bowden GD, Wright JS, Shao X, Sanford MS, Scott PJH. Photo- and Cu-Mediated 11C Cyanation of (Hetero)Aryl Thianthrenium Salts. Org Lett 2024; 26:3419-3423. [PMID: 38630573 PMCID: PMC11099534 DOI: 10.1021/acs.orglett.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We present a photo- and Cu-mediated 11C cyanation of bench-stable (hetero)aryl thianthrenium salts via an aryl radical addition pathway. The thianthrenium substrates can be readily accessed via C-H functionalization, and the radiocyanation protocol proceeds under mild conditions (<50 °C, 5 min) and can be automated using open-source, readily accessible augmentations to existing radiochemistry equipment.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen, Germany
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| |
Collapse
|
7
|
Lin D, Lechermann LM, Huestis MP, Marik J, Sap JBI. Light-Driven Radiochemistry with Fluorine-18, Carbon-11 and Zirconium-89. Angew Chem Int Ed Engl 2024; 63:e202317136. [PMID: 38135665 DOI: 10.1002/anie.202317136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.
Collapse
Affiliation(s)
- Daniel Lin
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Current address: University of Southern California Department of Chemistry, Loker Hydrocarbon Research Institute, 837 Bloom Walk, Los Angeles, CA 90089, USA
| | - Laura M Lechermann
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Malcolm P Huestis
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jan Marik
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jeroen B I Sap
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
8
|
Webb EW, Cheng K, Wright JS, Cha J, Shao X, Sanford MS, Scott PJH. Room-Temperature Copper-Mediated Radiocyanation of Aryldiazonium Salts and Aryl Iodides via Aryl Radical Intermediates. J Am Chem Soc 2023; 145:6921-6926. [PMID: 36917154 PMCID: PMC10065967 DOI: 10.1021/jacs.3c00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Radiocyanation is an attractive strategy for incorporating carbon-11 into radiotracer targets, particularly given the broad scope of acyl moieties accessible from nitriles. Most existing methods for aromatic radiocyanation require elevated temperatures (Cu-mediated reactions of aryl halides or organometallics) or involve expensive and toxic palladium complexes (Pd-mediated reactions of aryl halides). The current report discloses a complementary approach that leverages the capture of aryl radical intermediates by a Cu-11CN complex to achieve rapid and mild (5 min, room temperature) radiocyanation. In a first example, aryl radicals are generated via the reaction of a CuI mediator with an aryldiazonium salt (a Sandmeyer-type reaction) followed by radiocyanation with Cu-11CN. In a second example, aryl radicals are formed from aryl iodides via visible-light photocatalysis and then captured by a Cu-11CN species to achieve aryl-11CN coupling. This approach provides access to radiocyanated products that are challenging to access using other methods (e.g., ortho-disubstituted aryl nitriles).
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jocelyn Cha
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|