1
|
Stehr P, Zyrus J, Schneider C. Catalytic, Enantioselective Cycloaddition of Pyrrole-2 -methides with Aldehydes toward a Synthesis of 2,3-Dihydro-1 H-pyrrolizin-3-ols. Org Lett 2024; 26:8345-8349. [PMID: 39320910 PMCID: PMC11459514 DOI: 10.1021/acs.orglett.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
An organocatalytic, highly enantioselective [6 + 2]-cycloaddition of 2-methide-2H-pyrroles with aryl acetaldehydes represents a novel and straightforward route toward densely substituted 2,3-dihydro-1H-pyrrolizin-3-ols, which were generated with good yields and high enantio- and diastereoselectivity. This one-step process involves a BINOL-phosphoric acid catalyzed reaction of 1H-pyrrole-2-carbinols with aryl acetaldehydes via the corresponding hydrogen-bonded, chiral 2-methide-2H-pyrroles.
Collapse
Affiliation(s)
- Philipp Stehr
- Institut für Organische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | - Johannes Zyrus
- Institut für Organische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | | |
Collapse
|
2
|
Nian C, Yu R, Han Z, Bai Y, Wang J, Sun J, Huang H. Trifluoroethanol promoted formal nucleophilic substitution of indol-2-yl diaryl methanol for the synthesis of tetraarylmethanes. Chem Commun (Camb) 2024; 60:9797-9800. [PMID: 39162023 DOI: 10.1039/d4cc03420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The synthesis of tetraarylmethanes has long been a challenge in the field of synthetic chemistry. In this study, a series of tetraarylmethanes were successfully synthesized through the formal nucleophilic substitution reaction of indol-2-yl diaryl methanol catalyzed by Brønsted acid. The key success of this study lies in suppressing the influence of water molecules by forming hydrogen bonds with the TFE solvent. This process leads to the formation of active 2-indole imine methide (2-IIM) intermediates, ensuring the successful synthesis of tetraarylmethanes. Furthermore, some of the products also exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China.
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| |
Collapse
|
3
|
Saetae W, Chantana C, Saithong S, Chayajarus K, Jaratjaroonphong J. Short Total Synthesis of (+)-Colletotryptins B-D and Mucronatin B Derivative. J Org Chem 2024; 89:8620-8631. [PMID: 38809696 PMCID: PMC11197102 DOI: 10.1021/acs.joc.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The short and first total synthesis of (+)-colletotryptins B-D, ent-colletotryptin A, and diastereomer of mucronatin B, which are a group of natural 3-(indol-2-yl)-3-(indol-3-yl)-1,2-propanediol (IIPDO) analogues containing two stereogenic centers at the C8' and C9' positions, isolated from endophytic fungus Colletotrichum sp. SC1355 and Tetrapterys mucronata, respectively, has been successfully accomplished in two and three steps with overall yields ranging from 28 to 54%. Key features of this synthesis include an innovative Bi(OTf)3-catalyzed stereoselective transindolylation of (S)-3,3'-di(1H-indol-3-yl)propane-1,2-diol. The operational simplicity, environmentally friendly catalyst, and broad functional group tolerance of this modular strategy render it suitable for adoption in both academic and industrial settings.
Collapse
Affiliation(s)
- Wilailak Saetae
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Chayamon Chantana
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Saowanit Saithong
- Division
of Physical Science and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Kampanart Chayajarus
- Department
of Chemistry, Faculty of Science, Ubon Ratchathani
University, Ubon Ratchathani 34190, Thailand
| | - Jaray Jaratjaroonphong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Burapha University, Chonburi 20131, Thailand
- Research
Unit in Synthetic Compounds and Synthetic Analogues from Natural Product
for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Luo J, Zhao JX, He T, Liu P, Li CT. Phosphoric Acid Catalyzed N-Addition/ C-Addition Reaction of 3-Vinyl Indoles with Pyrazole/Pyrazolone to Construct Pyrazole-Substituted 3-(1-Heteroarylethyl)-indole Scaffolds. J Org Chem 2024; 89:6000-6015. [PMID: 38618901 DOI: 10.1021/acs.joc.3c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Developing a highly efficient atom-economic method for the preparation of 3-(1-heteroarylethyl)-indole scaffolds is of significant value in pharmaceutical and agricultural chemistry. Herein, a phosphoric acid-catalyzed N-addition reaction of 3-vinyl indoles with pyrazoles and C-addition reaction of 3-vinyl indoles with pyrazolones were developed. A series of pyrazole-substituted 3-(1-heteroarylethyl)-indole scaffolds were synthesized in excellent yields (up to 99% yield) under mild reaction conditions. A reasonable reaction mechanism was proposed to explain the experimental results.
Collapse
Affiliation(s)
- Jie Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Ji-Xing Zhao
- Analysis and Testing Center, Shihezi University, Xinjiang 832003, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Chun-Tian Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| |
Collapse
|
5
|
Teli P, Soni S, Teli S, Agarwal S. Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem (Cham) 2024; 382:8. [PMID: 38403746 DOI: 10.1007/s41061-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.
Collapse
Affiliation(s)
- Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shivani Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Sunita Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India.
| |
Collapse
|
6
|
Wang J, Yu R, Nian C, Liao M, Han Z, Sun J, Huang H. Metal-Free C(sp 3)-H Bond Arylation of 3-Methylindole Derivatives via 3-Indole Imine Methides. Org Lett 2023; 25:8478-8483. [PMID: 37966338 DOI: 10.1021/acs.orglett.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Direct arylation of the benzylic C(sp3)-H bond is one of the most straightforward strategies for the construction of multi-aryl methanes, owing to the extraordinary step and atom economy. In this paper, we developed the first metal-free arylation of the C(sp3)-H bond in 3-methylindoles, thereby providing rapid access to a range of diaryl- and triarylmethanes with two indole rings. Mechanistically, 3-indole imine methide serves as the key intermediate. Water plays a crucial role in this process, likely serving as a proton shuttle to facilitate the key 1,3-proton transfer step in this reaction and, thus, enhance the reaction efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
7
|
Wei J, Gandon V, Zhu Y. Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. J Am Chem Soc 2023; 145:16796-16811. [PMID: 37471696 PMCID: PMC10401725 DOI: 10.1021/jacs.3c04877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic application of asymmetric catalysis relies on strategic alignment of bond construction to creation of chirality of a target molecule. Remote desymmetrization offers distinctive advantages of spatial decoupling of catalytic transformation and generation of a stereogenic element. However, such spatial separation presents substantial difficulties for the chiral catalyst to discriminate distant enantiotopic sites through a reaction three or more bonds away from a prochirality center. Here, we report a strategy that establishes acyclic quaternary carbon stereocenters through cross-coupling reactions at distal positions of aryl substituents. The new class of amino acid-derived ionic chiral catalysts enables desymmetrizing (enantiotopic-group-selective) Suzuki-Miyaura reaction, Sonogashira reaction, and Buchwald-Hartwig amination between diverse diarylmethane scaffolds and aryl, alkynyl, and amino coupling partners, providing rapid access to enantioenriched molecules that project substituents to widely spaced positions in the three-dimensional space. Experimental and computational investigations reveal electrostatic steering of substrates by the C-terminus of chiral ligands through ionic interactions. Cooperative ion-dipole interactions between the catalyst's amide group and potassium cation aid in the preorganization that transmits asymmetry to the product. This study demonstrates that it is practical to achieve precise long-range stereocontrol through engineering the spatial arrangements of the ionic catalysts' substrate-recognizing groups and metal centers.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Hesnri Moissan, 17 avenue des sciences, 91400 Orsay, France
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|